Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030
Citation: Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021) . doi: 10.29026/oea.2021.210030

Review Open Access

Recent advances in optical dynamic meta-holography

More Information
  • Holography, with the capability of recording and reconstructing wavefronts of light, has emerged as an ideal approach for future deep-immersive naked-eye display. However, the shortcomings (e.g., small field of view, twin imaging, multiple orders of diffraction) of traditional dynamic holographic devices bring many challenges to their practical applications. Metasurfaces, planar artificial materials composed of subwavelength unit cells, have shown great potential in light field manipulation, which is useful for overcoming these drawbacks. Here, we review recent progress in the field of dynamic metasurface holography, from realization methods to design strategies, mainly including typical research works on dynamic meta-holography based on tunable metasurfaces and multiplexed metasurfaces. Emerging applications of dynamic meta-holography have been found in 3D display, optical storage, optical encryption, and optical information processing, which may accelerate the development of light field manipulation and micro/nanofabrication with higher dimensions. A number of potential applications and possible development paths are also discussed at the end.
  • 加载中
  • [1] Matharu AS, Jeeva S, Ramanujam PS. Liquid crystals for holographic optical data storage. Chem Soc Rev 36, 1868–1880 (2007). doi: 10.1039/b706242g

    CrossRef Google Scholar

    [2] Hvilsted S, Sánchez C, Alcalá R. The volume holographic optical storage potential in azobenzene containing polymers. J Mater Chem 19, 6641–6648 (2009). doi: 10.1039/b900930m

    CrossRef Google Scholar

    [3] Chen LF, Zhao DM. Optical color image encryption by wavelength multiplexing and lensless Fresnel transform holograms. Opt Express 14, 8552–8560 (2006). doi: 10.1364/OE.14.008552

    CrossRef Google Scholar

    [4] Rivenson Y, Zhang YB, Günaydın H, Teng D, Ozcan A. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci Appl 7, 17141 (2018). doi: 10.1038/lsa.2017.141

    CrossRef Google Scholar

    [5] Leach J, Sinclair G, Jordan P, Courtial J, Padgett MJ et al. 3D manipulation of particles into crystal structures using holographic optical tweezers. Opt Express 12, 220–226 (2004). doi: 10.1364/OPEX.12.000220

    CrossRef Google Scholar

    [6] Curtis JE, Koss BA, Grier DG. Dynamic holographic optical tweezers. Opt Commun 207, 169–175 (2002). doi: 10.1016/S0030-4018(02)01524-9

    CrossRef Google Scholar

    [7] Gabor D. A new microscopic principle. Nature 161, 777–778 (1948). doi: 10.1038/161777a0

    CrossRef Google Scholar

    [8] Brown BR, Lohmann AW. Complex spatial filtering with binary masks. Appl Opt 5, 967–969 (1966). doi: 10.1364/AO.5.000967

    CrossRef Google Scholar

    [9] Mok F, Diep J, Liu HK, Psaltis D. Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. Opt Lett 11, 748–750 (1986). doi: 10.1364/OL.11.000748

    CrossRef Google Scholar

    [10] Hahn J, Kim H, Lim Y, Park G, Lee B. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt Express 16, 12372–12386 (2008). doi: 10.1364/OE.16.012372

    CrossRef Google Scholar

    [11] Huang LL, Zhang S, Zentgraf T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169–1190 (2018). doi: 10.1515/nanoph-2017-0118

    CrossRef Google Scholar

    [12] Zhao RZ, Huang LL, Wang YT. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [13] Ma XL, Pu MB, Li X, Guo YH, Luo XG. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation. Opto-Electron Adv 2, 180023 (2019).

    Google Scholar

    [14] Guo JY, Wang T, Quan BG, Zhao H, Gu CZ et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019).

    Google Scholar

    [15] Zhang YB, Liu H, Cheng H, Tian JG, Chen SQ. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002

    CrossRef Google Scholar

    [16] Cai T, Wang GM, Zhang XF, Liang JG, Zhuang YQ et al. Ultra-thin polarization beam splitter using 2-D Transmissive phase gradient Metasurface. IEEE Trans Antennas Propag 63, 5629–5636 (2015). doi: 10.1109/TAP.2015.2496115

    CrossRef Google Scholar

    [17] Khorasaninejad M, Zhu W, Crozier KB. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2, 376–382 (2015). doi: 10.1364/OPTICA.2.000376

    CrossRef Google Scholar

    [18] Zhao ZY, Pu MB, Gao H, Jin JJ, Li X et al. Multispectral optical metasurfaces enabled by achromatic phase transition. Sci Rep 5, 15781 (2015). doi: 10.1038/srep15781

    CrossRef Google Scholar

    [19] Gao H, Pu MB, Li X, Ma XL, Zhao ZY et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface. Opt Express 25, 13933–13943 (2017). doi: 10.1364/OE.25.013933

    CrossRef Google Scholar

    [20] Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [21] Khorasaninejad M, Capasso F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017). doi: 10.1126/science.aam8100

    CrossRef Google Scholar

    [22] Shrestha S, Overvig AC, Lu M, Stein A, Yu NF. Broadband achromatic dielectric metalenses. Light Sci Appl 7, 85 (2018). doi: 10.1038/s41377-018-0078-x

    CrossRef Google Scholar

    [23] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [24] Dou KH, Xie X, Pu MB, Li X, Ma XL et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging. Opto-Electron Adv 3, 190005 (2020).

    Google Scholar

    [25] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [26] Gao H, Li Y, Chen LW, Jin JJ, Pu MB et al. Quasi-Talbot effect of orbital angular momentum beams for generation of optical vortex arrays by multiplexing metasurface design. Nanoscale 10, 666–671 (2018). doi: 10.1039/C7NR07873K

    CrossRef Google Scholar

    [27] Jin JJ, Luo J, Zhang XH, Gao H, Li X et al. Generation and detection of orbital angular momentum via metasurface. Sci Rep 6, 24286 (2016). doi: 10.1038/srep24286

    CrossRef Google Scholar

    [28] Yang KP, Pu MB, Li X, Ma XL, Luo J et al. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface. Nanoscale 8, 12267–12271 (2016). doi: 10.1039/C5NR09209D

    CrossRef Google Scholar

    [29] Karimi E, Schulz SA, De Leon I, Qassim H, Upham J et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci Appl 3, e167 (2014). doi: 10.1038/lsa.2014.48

    CrossRef Google Scholar

    [30] Li GX, Kang M, Chen SM, Zhang S, Pun EYB et al. Spin-enabled Plasmonic Metasurfaces for manipulating orbital angular momentum of light. Nano Lett 13, 4148–4151 (2013). doi: 10.1021/nl401734r

    CrossRef Google Scholar

    [31] Zhu XL, Yan W, Levy U, Mortensen NA, Kristensen A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci Adv 3, e1602487 (2017). doi: 10.1126/sciadv.1602487

    CrossRef Google Scholar

    [32] Sun S, Zhou ZX, Zhang C, Gao YS, Duan ZH et al. All-dielectric full-color printing with TiO2 Metasurfaces. ACS Nano 11, 4445–4452 (2017). doi: 10.1021/acsnano.7b00415

    CrossRef Google Scholar

    [33] Huo PC, Song MW, Zhu WQ, Zhang C, Chen L et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica 7, 1171–1172 (2020). doi: 10.1364/OPTICA.403092

    CrossRef Google Scholar

    [34] Cheng F, Gao J, Luk TS, Yang XD. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Sci Rep 5, 11045 (2015). doi: 10.1038/srep11045

    CrossRef Google Scholar

    [35] Proust J, Bedu F, Gallas B, Ozerov I, Bonod N. All-dielectric colored Metasurfaces with silicon mie resonators. ACS Nano 10, 7761–7767 (2016). doi: 10.1021/acsnano.6b03207

    CrossRef Google Scholar

    [36] Lee GY, Sung J, Lee B. Recent advances in metasurface hologram technologies (Invited paper). ETRI J 41, 10–22 (2019). doi: 10.4218/etrij.2018-0532

    CrossRef Google Scholar

    [37] Zheng GX, Mühlenbernd H, Kenney M, Li GX, Zentgraf T et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [38] Huang LL, Chen XZ, Mühlenbernd H, Zhang H, Chen SM et al. Three-dimensional optical holography using a plasmonic metasurface. Nat Commun 4, 2808 (2013). doi: 10.1038/ncomms3808

    CrossRef Google Scholar

    [39] Wang L, Kruk S, Tang HZ, Li T, Kravchenko I et al. Grayscale transparent metasurface holograms. Optica 3, 1504–1505 (2016). doi: 10.1364/OPTICA.3.001504

    CrossRef Google Scholar

    [40] Zhang XH, Jin JJ, Wang YQ, Pu MB, Li X et al. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci Rep 6, 19856 (2016). doi: 10.1038/srep19856

    CrossRef Google Scholar

    [41] Devlin RC, Khorasaninejad M, Chen WT, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA 113, 10473–10478 (2016). doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [42] Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk’yanchuk B et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [43] Butt H, Montelongo Y, Butler T, Rajesekharan R, Dai Q et al. Carbon nanotube based high resolution holograms. Adv Mater 24, OP331–OP336 (2012).

    Google Scholar

    [44] Walther B, Helgert C, Rockstuhl C, Setzpfandt F, Eilenberger F et al. Photonics: spatial and spectral light shaping with Metamaterials (Adv. Mater. 47/2012). Adv Mater 24, 6251 (2012). doi: 10.1002/adma.201290300

    CrossRef Google Scholar

    [45] Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [46] Wang Q, Zhang XQ, Xu YH, Gu JQ, Li YF et al. Broadband metasurface holograms: toward complete phase and amplitude engineering. Sci Rep 6, 32867 (2016). doi: 10.1038/srep32867

    CrossRef Google Scholar

    [47] Chong KE, Wang L, Staude I, James AR, Dominguez J et al. Efficient polarization-insensitive complex Wavefront control using Huygens’ Metasurfaces based on dielectric resonant meta-atoms. ACS Photonics 3, 514–519 (2016). doi: 10.1021/acsphotonics.5b00678

    CrossRef Google Scholar

    [48] Overvig AC, Shrestha S, Malek SC, Lu M, Stein A et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci Appl 8, 92 (2019). doi: 10.1038/s41377-019-0201-7

    CrossRef Google Scholar

    [49] Jiang Q, Jin GF, Cao LC. When metasurface meets hologram: principle and advances. Adv Opt Photonics 11, 518–576 (2019). doi: 10.1364/AOP.11.000518

    CrossRef Google Scholar

    [50] Chen SQ, Liu WW, Li ZC, Cheng H, Tian JG. Metasurface-empowered optical multiplexing and multifunction. Adv Mater 32, 1805912 (2020). doi: 10.1002/adma.201805912

    CrossRef Google Scholar

    [51] Li ZL, Yu SH, Zheng GX. Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more. Nanophotonics 9, 3699–3731 (2020). doi: 10.1515/nanoph-2020-0127

    CrossRef Google Scholar

    [52] Cui T, Bai BF, Sun HB. Tunable Metasurfaces based on active materials. Adv Funct Mater 29, 1806692 (2019). doi: 10.1002/adfm.201806692

    CrossRef Google Scholar

    [53] Nemati A, Wang Q, Hong MH, Teng JH. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv 1, 180009 (2018).

    Google Scholar

    [54] Horie Y, Arbabi A, Arbabi E, Kamali SM, Faraon A. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas. ACS Photonics 5, 1711–1717 (2018). doi: 10.1021/acsphotonics.7b01073

    CrossRef Google Scholar

    [55] Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013). doi: 10.1038/nature11727

    CrossRef Google Scholar

    [56] Rahmani M, Xu L, Miroshnichenko AE, Komar A, Camacho-Morales R et al. Reversible thermal tuning of all-dielectric Metasurfaces. Adv Funct Mater 27, 1700580 (2017). doi: 10.1002/adfm.201700580

    CrossRef Google Scholar

    [57] Lewi T, Evans HA, Butakov NA, Schuller JA. Ultrawide thermo-optic tuning of PbTe meta-atoms. Nano Lett 17, 3940–3945 (2017). doi: 10.1021/acs.nanolett.7b01529

    CrossRef Google Scholar

    [58] Gu JQ, Singh R, Liu XJ, Zhang XQ, Ma YF et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3, 1151 (2012). doi: 10.1038/ncomms2153

    CrossRef Google Scholar

    [59] Makarov S, Kudryashov S, Mukhin I, Mozharov A, Milichko V et al. Tuning of magnetic optical response in a dielectric nanoparticle by ultrafast Photoexcitation of dense electron–hole plasma. Nano Lett 15, 6187–6192 (2015). doi: 10.1021/acs.nanolett.5b02534

    CrossRef Google Scholar

    [60] Lewi T, Iyer PP, Butakov NA, Mikhailovsky AA, Schuller JA. Widely tunable infrared antennas using free carrier refraction. Nano Lett 15, 8188–8193 (2015). doi: 10.1021/acs.nanolett.5b03679

    CrossRef Google Scholar

    [61] Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006). doi: 10.1038/nature05343

    CrossRef Google Scholar

    [62] Watts CM, Shrekenhamer D, Montoya J, Lipworth G, Hunt J et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat Photonics 8, 605–609 (2014). doi: 10.1038/nphoton.2014.139

    CrossRef Google Scholar

    [63] Chen HT, Padilla WJ, Cich MJ, Azad AK, Averitt RD et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics 3, 148–151 (2009). doi: 10.1038/nphoton.2009.3

    CrossRef Google Scholar

    [64] Iyer PP, Pendharkar M, Schuller JA. Electrically reconfigurable Metasurfaces using Heterojunction resonators. Adv Opt Mater 4, 1582–1588 (2016). doi: 10.1002/adom.201600297

    CrossRef Google Scholar

    [65] Huang YW, Lee HWH, Sokhoyan R, Pala RA, Thyagarajan K et al. Gate-tunable conducting oxide Metasurfaces. Nano Lett 16, 5319–5325 (2016). doi: 10.1021/acs.nanolett.6b00555

    CrossRef Google Scholar

    [66] Chen YB, Ke F, Ci PH, Ko C, Park T et al. Pressurizing field-effect transistors of few-layer MoS2 in a diamond anvil cell. Nano Lett 17, 194–199 (2017). doi: 10.1021/acs.nanolett.6b03785

    CrossRef Google Scholar

    [67] Thyagarajan K, Sokhoyan R, Zornberg L, Atwater HA. Millivolt modulation of Plasmonic Metasurface optical response via ionic conductance. Adv Mater 29, 1701044 (2017). doi: 10.1002/adma.201701044

    CrossRef Google Scholar

    [68] Shirmanesh GK, Sokhoyan R, Wu PC, Atwater HA. Electro-optically tunable multifunctional Metasurfaces. ACS Nano 14, 6912–6920 (2020). doi: 10.1021/acsnano.0c01269

    CrossRef Google Scholar

    [69] Lee S, Baek S, Kim TT, Cho H, Lee S et al. Metamaterials for enhanced optical responses and their application to active control of terahertz waves. Adv Mater 32, 2000250 (2020). doi: 10.1002/adma.202000250

    CrossRef Google Scholar

    [70] Liu PQ, Luxmoore IJ, Mikhailov SA, Savostianova NA, Valmorra F et al. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat Commun 6, 8969 (2015). doi: 10.1038/ncomms9969

    CrossRef Google Scholar

    [71] Li XP, Ren HR, Chen X, Liu J, Li Q et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6, 6984 (2015). doi: 10.1038/ncomms7984

    CrossRef Google Scholar

    [72] Li SQ, Xu XW, Veetil RM, Valuckas V, Paniagua-Domínguez R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019). doi: 10.1126/science.aaw6747

    CrossRef Google Scholar

    [73] Komar A, Paniagua-Domínguez R, Miroshnichenko A, Yu YF, Kivshar YS et al. Dynamic beam switching by liquid crystal tunable dielectric Metasurfaces. ACS Photonics 5, 1742–1748 (2018). doi: 10.1021/acsphotonics.7b01343

    CrossRef Google Scholar

    [74] de Galarreta CR, Alexeev AM, Au YY, Lopez-Garcia M, Klemm M et al. Nonvolatile reconfigurable phase-change Metadevices for beam steering in the near infrared. Adv Funct Mater 28, 1704993 (2018). doi: 10.1002/adfm.201704993

    CrossRef Google Scholar

    [75] Yin XH, Steinle T, Huang LL, Taubner T, Wuttig M et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci Appl 6, e17016 (2017). doi: 10.1038/lsa.2017.16

    CrossRef Google Scholar

    [76] Zhou HQ, Wang YT, Li XW, Wang Q, Wei QS et al. Switchable active phase modulation and holography encryption based on hybrid metasurfaces. Nanophotonics 9, 905–912 (2020). doi: 10.1515/nanoph-2019-0519

    CrossRef Google Scholar

    [77] Lee SY, Kim YH, Cho SM, Kim GH, Kim TY et al. Holographic image generation with a thin-film resonance caused by chalcogenide phase-change material. Sci Rep 7, 41152 (2017). doi: 10.1038/srep41152

    CrossRef Google Scholar

    [78] Zhang M, Pu MB, Zhang F, Guo YH, He Q et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials. Adv Sci 5, 1800835 (2018). doi: 10.1002/advs.201800835

    CrossRef Google Scholar

    [79] Raeis-Hosseini N, Rho J. Metasurfaces Based on phase-change material as a reconfigurable platform for multifunctional devices. Materials 10, 1046 (2017). doi: 10.3390/ma10091046

    CrossRef Google Scholar

    [80] Qu YR, Li Q, Du KK, Cai L, Lu J et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev 11, 1700091 (2017). doi: 10.1002/lpor.201700091

    CrossRef Google Scholar

    [81] Driscoll T, Palit S, Qazilbash MM, Brehm M, Keilmann F et al. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Appl Phys Lett 93, 024101 (2008). doi: 10.1063/1.2956675

    CrossRef Google Scholar

    [82] Goldflam MD, Liu MK, Chapler BC, Stinson HT, Sternbach AJ et al. Voltage switching of a VO2 memory metasurface using ionic gel. Appl Phys Lett 105, 041117 (2014). doi: 10.1063/1.4891765

    CrossRef Google Scholar

    [83] Liu XB, Wang Q, Zhang XQ, Li H, Xu Q et al. Thermally dependent dynamic meta-holography using a vanadium dioxide integrated Metasurface. Adv Opt Mater 7, 1900175 (2019). doi: 10.1002/adom.201900175

    CrossRef Google Scholar

    [84] Haimov T, Aydin K, Scheuer J. Reconfigurable holograms using VO2-based tunable metasurface. IEEE J Sel Top Quantum Electron 27, 4700308 (2021).

    Google Scholar

    [85] Song SC, Ma XL, Pu MB, Li X, Liu KP et al. Actively tunable structural color rendering with tensile substrate. Adv Opt Mater 5, 1600829 (2017). doi: 10.1002/adom.201600829

    CrossRef Google Scholar

    [86] Zhang C, Jing JX, Wu YK, Fan YB, Yang WH et al. Stretchable all-dielectric Metasurfaces with polarization-insensitive and full-spectrum response. ACS Nano 14, 1418–1426 (2020). doi: 10.1021/acsnano.9b08228

    CrossRef Google Scholar

    [87] Malek SC, Ee HS, Agarwal R. Strain multiplexed Metasurface holograms on a stretchable substrate. Nano Lett 17, 3641–3645 (2017). doi: 10.1021/acs.nanolett.7b00807

    CrossRef Google Scholar

    [88] Ee HS, Agarwal R. Tunable Metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett 16, 2818–2823 (2016). doi: 10.1021/acs.nanolett.6b00618

    CrossRef Google Scholar

    [89] Li TY, Wei QS, Reineke B, Walter F, Wang YT et al. Reconfigurable metasurface hologram by utilizing addressable dynamic pixels. Opt Express 27, 21153–21162 (2019). doi: 10.1364/OE.27.021153

    CrossRef Google Scholar

    [90] Li JX, Kamin S, Zheng GX, Neubrech F, Zhang S et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci Adv 4, eaar6768 (2018). doi: 10.1126/sciadv.aar6768

    CrossRef Google Scholar

    [91] Zylbersztejn A, Mott NF. Metal-insulator transition in vanadium dioxide. Phys Rev B 11, 4383–4395 (1975). doi: 10.1103/PhysRevB.11.4383

    CrossRef Google Scholar

    [92] Duan XY, Kamin S, Sterl F, Giessen H, Liu N. Hydrogen-regulated chiral Nanoplasmonics. Nano Lett 16, 1462–1466 (2016). doi: 10.1021/acs.nanolett.5b05105

    CrossRef Google Scholar

    [93] Kozacki T, Chlipala M, Choo HG. Fourier rainbow holography. Opt Express 26, 25086–25097 (2018). doi: 10.1364/OE.26.025086

    CrossRef Google Scholar

    [94] Lin SF, Kim ES. Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods. Opt Express 25, 11389–11404 (2017). doi: 10.1364/OE.25.011389

    CrossRef Google Scholar

    [95] Jesacher A, Bernet S, Ritsch-Marte M. Colour hologram projection with an SLM by exploiting its full phase modulation range. Opt Express 22, 20530–20541 (2014). doi: 10.1364/OE.22.020530

    CrossRef Google Scholar

    [96] Wang DP, Hwang Y, Dai YM, Si GY, Wei SB et al. Broadband high-efficiency chiral splitters and holograms from dielectric Nanoarc Metasurfaces. Small 15, 1900483 (2019). doi: 10.1002/smll.201900483

    CrossRef Google Scholar

    [97] Xie ZW, Lei T, Si GY, Wang XY, Lin J et al. Meta-holograms with full parameter control of Wavefront over a 1000 nm Bandwidth. ACS Photonics 4, 2158–2164 (2017). doi: 10.1021/acsphotonics.7b00710

    CrossRef Google Scholar

    [98] Huang K, Liu H, Si GY, Wang Q, Lin J et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms. Laser Photonics Rev 11, 1700025 (2017). doi: 10.1002/lpor.201700025

    CrossRef Google Scholar

    [99] Huang YW, Chen WT, Tsai WY, Wu PC, Wang CM et al. Aluminum Plasmonic multicolor meta-hologram. Nano Lett 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [100] Wang B, Dong FL, Li QT, Yang D, Sun CW et al. Visible-frequency dielectric Metasurfaces for Multiwavelength achromatic and highly dispersive holograms. Nano Lett 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326

    CrossRef Google Scholar

    [101] Zhao WY, Liu BY, Jiang H, Song J, Pei YB et al. Full-color hologram using spatial multiplexing of dielectric metasurface. Opt Lett 41, 147–150 (2016). doi: 10.1364/OL.41.000147

    CrossRef Google Scholar

    [102] Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [103] Wan WW, Gao J, Yang XD. Full-color Plasmonic Metasurface holograms. ACS Nano 10, 10671–10680 (2016). doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [104] Zhang XH, Pu MB, Guo YH, Jin JJ, Li X et al. Colorful Metahologram with independently controlled images in transmission and reflection spaces. Adv Funct Mater 29, 1809145 (2019). doi: 10.1002/adfm.201809145

    CrossRef Google Scholar

    [105] Montelongo Y, Tenorio-Pearl JO, Milne WI, Wilkinson TD. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett 14, 294–298 (2014). doi: 10.1021/nl4039967

    CrossRef Google Scholar

    [106] Chen WT, Yang KY, Wang CM, Huang YW, Sun G et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett 14, 225–230 (2014). doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [107] Zhang F, Pu MB, Li X, Gao P, Ma XL et al. All-dielectric Metasurfaces for simultaneous giant circular asymmetric transmission and Wavefront shaping based on asymmetric photonic spin–orbit interactions. Adv Funct Mater 27, 1704295 (2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [108] Deng ZL, Deng JH, Zhuang X, Wang S, Li KF et al. Diatomic Metasurface for Vectorial holography. Nano Lett 18, 2885–2892 (2018). doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [109] Wang Q, Plum E, Yang QL, Zhang XQ, Xu Q et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci Appl 7, 25 (2018). doi: 10.1038/s41377-018-0019-8

    CrossRef Google Scholar

    [110] Wen DD, Yue FY, Li GX, Zheng GX, Chan K et al. Helicity multiplexed broadband metasurface holograms. Nat Commun 6, 8241 (2015). doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [111] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [112] Balthasar Mueller JP, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface Polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [113] Khorasaninejad M, Ambrosio A, Kanhaiya P, Capasso F. Broadband and chiral binary dielectric meta-holograms. Sci Adv 2, e1501258 (2016). doi: 10.1126/sciadv.1501258

    CrossRef Google Scholar

    [114] Zhao RZ, Sain B, Wei QS, Tang CC, Li XW et al. Multichannel vectorial holographic display and encryption. Light Sci Appl 7, 95 (2018). doi: 10.1038/s41377-018-0091-0

    CrossRef Google Scholar

    [115] Arbabi E, Kamali SM, Arbabi A, Faraon A. Vectorial holograms with a dielectric metasurface: ultimate polarization pattern generation. ACS Photonics 6, 2712–2718 (2019). doi: 10.1021/acsphotonics.9b00678

    CrossRef Google Scholar

    [116] Deng LG, Deng J, Guan ZQ, Tao J, Chen Y et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl 9, 101 (2020). doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [117] Kamali SM, Arbabi E, Arbabi A, Horie Y, Faraji-Dana MS et al. Angle-multiplexed Metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys Rev X 7, 041056 (2017).

    Google Scholar

    [118] Wang EL, Niu JB, Liang YH, Li HL, Hua YL et al. Complete control of multichannel, angle-multiplexed, and arbitrary spatially varying polarization fields. Adv Opt Mater 8, 1901674 (2020). doi: 10.1002/adom.201901674

    CrossRef Google Scholar

    [119] Zhang XH, Jin JJ, Pu MB, Li X, Ma XL et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes. Nanoscale 9, 1409–1415 (2017). doi: 10.1039/C6NR07854K

    CrossRef Google Scholar

    [120] Ren HR, Briere G, Fang XY, Ni PN, Sawant R et al. Metasurface orbital angular momentum holography. Nat Commun 10, 2986 (2019). doi: 10.1038/s41467-019-11030-1

    CrossRef Google Scholar

    [121] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [122] Ren HR, Fang XY, Jang J, Bürger J, Rho J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [123] Jin L, Huang YW, Jin ZW, Devlin RC, Dong ZG et al. Dielectric multi-momentum meta-transformer in the visible. Nat Commun 10, 4789 (2019). doi: 10.1038/s41467-019-12637-0

    CrossRef Google Scholar

    [124] Zhou HQ, Sain B, Wang YT, Schlickriede C, Zhao RZ et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography. ACS Nano 14, 5553–5559 (2020). doi: 10.1021/acsnano.9b09814

    CrossRef Google Scholar

    [125] Yu P, Li JX, Li X, Schütz G, Hirscher M et al. Generation of switchable singular beams with dynamic metasurfaces. ACS Nano 13, 7100–7106 (2019). doi: 10.1021/acsnano.9b02425

    CrossRef Google Scholar

    [126] Izumi R, Ikezawa S, Iwami K. Metasurface holographic movie: a cinematographic approach. Opt Express 28, 23761–23770 (2020). doi: 10.1364/OE.399369

    CrossRef Google Scholar

    [127] Gao H, Wang YX, Fan XH, Jiao BZ, Li TA et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate. Sci Adv 6, eaba8595 (2020). doi: 10.1126/sciadv.aba8595

    CrossRef Google Scholar

    [128] Li GX, Chen SM, Pholchai N, Reineke B, Wong PWH et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater 14, 607–612 (2015). doi: 10.1038/nmat4267

    CrossRef Google Scholar

    [129] Segal N, Keren-Zur S, Hendler N, Ellenbogen T. Controlling light with metamaterial-based nonlinear photonic crystals. Nat Photonics 9, 180–184 (2015). doi: 10.1038/nphoton.2015.17

    CrossRef Google Scholar

    [130] Tymchenko M, Gomez-Diaz JS, Lee J, Nookala N, Belkin MA et al. Gradient nonlinear Pancharatnam-berry metasurfaces. Phys Rev Lett 115, 207403 (2015). doi: 10.1103/PhysRevLett.115.207403

    CrossRef Google Scholar

    [131] Ye WM, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [132] Qu GY, Yang WH, Song QH, Liu YL, Qiu CW et al. Reprogrammable meta-hologram for optical encryption. Nat Commun 11, 5484 (2020). doi: 10.1038/s41467-020-19312-9

    CrossRef Google Scholar

    [133] Jin L, Dong ZG, Mei ST, Yu YF, Wei Z et al. Noninterleaved Metasurface for (26–1) Spin- and wavelength-encoded holograms. Nano Lett 18, 8016–8024 (2018). doi: 10.1021/acs.nanolett.8b04246

    CrossRef Google Scholar

    [134] Deng ZL, Jin MK, Ye X, Wang S, Shi T et al. Full-color complex-amplitude Vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater 30, 1910610 (2020). doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [135] Li ZL, Chen C, Guan ZQ, Tao J, Chang S et al. Three-channel Metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032

    CrossRef Google Scholar

    [136] Dai Q, Guan ZQ, Chang S, Deng LG, Tao J et al. A single-celled tri-functional Metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990

    CrossRef Google Scholar

    [137] Park J, Jeong BG, Kim SI, Lee D, Kim J et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat Nanotechnol 16, 69–76 (2021). doi: 10.1038/s41565-020-00787-y

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(18199) PDF downloads(3953) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint