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1. Introduction

In this work, we study the existence and multiplicity of solutions to discrete inclusions of

the following Kirchhoff type problem

—M(A(k 1, Aulk — 1)))A(a(k ~ 1, Aulk — 1))) e NOF(k,u(k)), ke

(1.1)
u(k +m) =u(k),V k € Z,

where Au(k) = u(k + 1) — u(k) is the forward difference operator, u(k) € R” for all k € Z;

a(k,.): R® — R"™ is a continuous function for all & € Z and there exists a mapping A :
7 x R" — R" satisfying a(k,f)—%lz’g), Vk € 7Z and A(k,0) = 0 for all k € Z. Let
the function F' : Z x R" — R"™ and 0F (k,u) denotes the Clarke subdifferential of F' with
respect to the second variable. Recall that if f : X — R" is a locally Lipschitz functional

and x € X, the Clarke subdifferential of f at the point x is the nonempty subset df(x) of
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X* which is defined by
Of (x) :={a* € X*: (a*,v) < fO(z;v),for allv e X},

where f(z;v) is the generalized directional derivative of f at the point x along the direction
v (to be defined later).

Here, )\ is a positive real parameter and m > 2 is a fixed natural number.

M((t) is a continuous function that satisfy some conditions which will be stated later on.
Here, we are interested in investigating nonlinear discrete boundary value problems by using
variational approach. We refer to [1, 2, 3, 4, 5, 6, 14, 15, 18, 19, 20, 21, 27, 29] and the
references therein for more details about discrete boundary value problems.

Problem (1.1) has its origin in the theory of non linear vibration. For instance, the following
equation describes the free vibration of a stretched string (see [24])

0%u (T Ea (% 0u ‘de> 0%u

(1.2) Gty N o KL e

where p > 0 is the mass per unit length, 7j is the base tension, E is the Young modulus, a
is the area of cross section and L is the initial length of the string.

Equation (1.2) takes into account the change of the tension on the string which is caused
by the change of its length during the vibration. The nonlocal equation of this type was
firstly proposed by Kirchhoff in 1876 (see [16]). After that, several physicists also considered
such equations for their researches in the theory of nonlinear vibrations theoretically or
experimentally [7, 8, 24, 25] . As far as we know, the first study which deals with anisotropic
discrete boundary-value problems of p(.)-Kirchhoff type difference equation was done by
Yucedag (see [28]). A more general study of the problem of Yucedag has been done by Koné
et al (see [17]). In this paper our aim is to establish the existence and multiplicity results
for problem (1.1) through variational methods.

We will use some abstract tools contained in [23, 26] studying the above anisotropic discrete
inclusions.

The remaining part of this article is organized as follows: some usefull preliminary results
are presented in Section 2. In Section 3, we recall the new abstract critical point theorems

established in [11], while Section 4 is devoted to the multiplicity results for problem (1.1).

2. Basic definitions and preliminary results

Let (E,].]|) be a real Banach space. We denote by E* the dual space of E, while (,) stands
for the duality pairing between E* and F.
A function J : F — R is called locally Lipschitz continuous, if for every u € E, there exist
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a neighbourhood V,, of u and a constant L, > 0 such that
|J(z) — J(w)| < Ly||z —w]|| forall z,w € V,.

If u,2 € E, we write J°(u; 2) for the generalized directional derivative of J at the point u

along the direction z, i.e.

J%(u; z) := lim sup Jlw+t2) - J(w).

WUy 0+ t
The generalized gradient of the function J in u, denoted by 9.J(u), is the set
dJ(u) := {u* € E*: (u*,2) < J%u; 2),for all z € E}.
The basic properties of generalized directional derivative and generalized gradient were s-
tudied in [9, 10].
We recall that if J is continuously Gateaux differentiable at u, then J is locally Lipschitz at
u and 0J(u) = {J (u)}, where J'(u) stands for the first derivative of J at u.

Furthermore, a point u is called a (generalized) critical point of the locally Lipschitz contin-
uous function J, if Og- € 9J(u), i.e.

J%(u;2) >0, for every z € E.

Clearly, if J is continuously Gateaux differentiable at u, then u becomes a (classical) critical
point of J, that is J'(u) = Op-.

A locally Lipschitz continuous functional J : £ — R is said to fulfil the Palais-Smale
(PS) condition if every sequence {u,} in F such that {.J(u,)} is bounded and
T (U u — ) > —e ||t — uy|

for all u € E, where ¢, — 07 as n — 00, possesses a convergent subsequence.

Definition 2.1. A function f defined on a normed space X to R is said to be coercive over

an unbounded part P of X z'fH Hlim f(x) = +o0, where x € P. f is said to be anti-coercive
z||—>+o00

if (—f) is coercive.

For a complete overview on the non-smooth calculus we refer the readers to the paper [22].
Furthermore, let’s cite a recent book [19] as a general reference on the subject of our paper.
Our main tool will be the following abstract critical point theorems, for locally Lipschitz

continuous functions that we recall here, for completeness, in their general form.
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Theorem 2.2. ([26], Theorem 2.3) Let E be a real Banach space. Assume that E := E1®FEs,
with Ey finite-dimensional subspace of E. Let J: E — R be a locally Lipschitz continuous
functional satisfying the (PS) condition and such that

J(u) <0, (‘v’u € B(0,p) N E2);
J(u) >0, (Yue B(0,p) N Ey),

for some p > 0.
Assume also that J is bounded from below and ing J(u) < 0. Then, J has at least two
ue

non-zero critical points.

Theorem 2.3. [23] Let (E,||.||) be a real Banach space and let J : E — R be a locally
Lipschitz continuous functional satisfying (PS) condition. If there exist ui,us € E, uy # us
and r € (0, ||lug — uy||) such that inf{J(u) : ||u —wi| = r} > mazx{J(u1), J(u2)} and we
denote by I' the family of continuous paths v : [0,1] — E joining u; and ug, then

¢ := inf max J(y(s)) > max{J(u1), J(u2)} is a critical value for E and K. — {u1,us} # 0,

~v€l s€(0,1]
where K, is the set of critical points at the level c.

We now make the following assumptions on the data.

A(k
(H): 3 A: Z x R — R" with a(k,f):m, Vk € Z, ¢ € R* and A(k,0) = 0 for all

23

keZ.

(H,) : 3C} > 0 such that |a(k,&)| < Oy1(1+ PR~ Yk € Z and V¢ € R,

(H3) : (a(k,&) —a(k,n)).(€ —n) >0, ¥(&,n) € R* x R™ such that £ # n and Vk € Z.

(Hy) @ [€]P®) < a(k,€).€ < p(k)A(k, &), € € R" and p : Z — (2,+00), where p is an
m-periodic function, i.e. p(k +m) = p(k), Vk € Z.

(Hs) : ais an m-periodic function with respect to k, i.e. a(m+k,§&) = a(k,§) for all (k&) €
Z x R™.

(Hg) : F is an m-periodic function with respect to k, i.e. F(k,u) = F(k + m,u) for all
(k,u) € Z x R™.

(H7) : F(k,.) is locally Lipschitz continuous for all k € Z.

Hs) : F(k,0) = 0 for all k € Z.

(Hg) : M : (0,400) — (0,400) is continuous and nondecreasing and there exist positive
reals By, By with B; < By and o > 1 such that

Bit* ' < M(t) < Bot*™* fort >t* > 0.
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Ezample 2.4. As examples of functions satisfying assumptions (H;) — (Hy), we can give the
following.
(1) M(A(k, €)=
£ e R

(2) M(A(k, &)= a+ 1%[(1 + |§|2)@ — 1}, where M (t) = a + bt and a(k,&) = (1 +

€]2)PR)=2/2 ¢ for k € Z and € € R™.
(3) F :Z x R™ given by

1
o) €|P®) = 1, where M (t) = 1 and a(k, &) = |¢|PR72.€, for k € Z and
p

16¢* if |¢] < 1,
F(k,t)§ —4lt|+3if [t] € (3,1),
thH =1 = 2if ¢ > 1.

3. Three critical points theorem for locally Lipschitz functionals

In this section we recall the tools used in [11].

Theorem 3.1. Let (X, 1) be an Hausdorff space and ®,J : X — R be functionals. Let M
be the set (possibly empty) of all the global minimizers of J and define

= l}g}f{@(x),

inf ®(z) if M #0

zeM

sup®(z) of M =10).

zeX
Let o < B and assume that the set

{re X :®(x)+oJ(x) < p},

for every o > 0 and every p € R, is sequentially compact (if not empty). Then at least one
of the following conditions holds.

(a) There exists a continuous mapping h : («, ) — X with the following property: for
every t € (a, f),

O(h(t)) =t
and for every x € ®~(t) with x # h(t),

J(z) > J(h(t)).
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(b) There exists A > 0 such that the functional ® + X\J admits at least two global minimizers
n X.

Theorem 3.2. Let E be a finite dimensional real Banach space. Let yn : E — R be a
coercive Ct functional such that ;1(0) = 0 and let J : E — R be locally Lipschitz. Let s > 0
and 0 < r < s be fired. Assume that

(by)  lim inf—= >0;
w(u)—r 400 ,u(u

(by) inf J(u) < inf J(u);

uck w(u)<s

(b3) J(0) < inf  J(u).

r<p(u)<s

Then, there exists A > 0 such that the functional p+ AJ has at least three critical points in

E, at least two of which are non-trivial.

Theorem 3.3. Let E be a finite dimensional real Banach space. Let u : E — R be a
coercive Ct functional such that u(0) = 0 and let J : E — R be a locally lipschitz functional
bounded from below. Let s > 0 and 0 < r < s be fized constants. Assume moreover that
conditions (bg) and (bs) hold. Then there exists X\ > 0 such that the functional p+ \J has

at least three critical points in E.

4. Variational framework and auxiliary results

From now on, we will use the following notations.

= k d p~ = i k
oA ]p( ) and p ke%rfm]p( ),

where Z[a,b] := {a,a+ 1,...,b}, with a,b € N such that a < b.
Define the space

H,, = {u = {u(k)}rez : u(k) € R", u(k +m) = u(k),k € Z},

which equipped with the Euclidean norm

lulle = (Z IU(/f)|2>

becomes an Hilbert space.

Put for any a € R,
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W, = {u = {u(k) ez uk) = a,k € Z} and Y, := W,

Thus, W, consists of constant sequences and we have an orthogonal decomposition
H,=Y,®W,, for any a € R".

The energy functional corresponding to (1.1) is

(zm:A k-1, Au(k ))) A F(k,u(k)),

where ]T/[\(t) = f(f M (s)ds.

Definition 4.1. A solution of problem (1.1) is a function u € H,, such that

—M<Zm:A( ~ 1, Aulk ) Zm:A — 13 Au(k — D)Alk) — A FO(k; u(k)h(k) > 0,

k=1
for all h € H,, with h(k) >0 and for all k € Z.

Proposition 4.2. Assume that (Hy), (Hs), (Hg) and (Hy) hold. Then J,, is locally Lipschitz
continuous.

Proof.
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|J(2) — J(w)| = ‘J\//T(Zm:A(k; 1, Ax(k — 1))) - M(Zm:A(k — 1, Aw(k — 1)))

Zm:A(k; —1,Az(k—-1)) .
- '/;;1 ML)+ XY [Pk, 2(k)) = F(k, w(k))|
Ak — 1, Aw(k — 1)) k=1
k=1
iA(k— 1, Az(k — 1)) i
< /,’jfl Byttt + Ay ‘F(k, (k) — F(k, w(k))’
A(k 1, Aw(k — 1)) k=1

)

+/\Z‘sz kw(k:))‘

If w = 2z then, J(z) = J(w). Consequently, 3K; > 0 such that |.J(z) w)| < Killz — wlle.

m

If z  w then, ||w—z| # 0 and since the quantity [ ZA k—1,Az(k—1))

k=1

L, Aw(k — 1))) ] is finite then, 3K > 0 such that

(Savsien) - (Savrsws-n) | <xeu.

Consequently, since F'(k,.) is locally Lipschitz continuous then for all u € H,,, there exist a
neighbourhood V,, of v and constant Cy > 0 such that |F'(k, z(k))—F (k, w(k))| < Callz—w|..
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We can deduce that
B
|J(z) = J(w)| < EQK2||Z —wlle + AmCql|z — wlle
. By
< L||z — wlle, with L = —= K5 + AmCs.
a
Lemma 4.3. Let u € H,, be a critical point of J,,. Then, u satisfies problem (1.1).

Proof.

Assume that v € H,, is a critical point of J,,. Then, for any h € H,,, J(u;h) > 0.
We have

J(w + th) = M(sz(k; — 1, AW+ th)(k — 1))) - /\i F(k, (w + th)(k))

consequently

J(w+ th) — J(w) = ]\//T(iA(k ~ 1, Aw(k 1) + tAR(k - 1)) — M(i Ak =1, Aw(k - 1))
k=1 k=1
- M(zm:A(k ~ 1 Aw(k 1) + tAR(k - 1)) — M(zm: Ak =1, Aw(k - 1))

k=
iF(kw k) + th(k Zka ]

By dividing by ¢ and by making ¢ tend towards 0 and w towards u, we obtain

m m

JO(us h) <ZA (k—1, Au(k—1)) >Za k=15 Au(k—1)) Ah(k—1) =\ S FO(k; u(k))h(k).

k=1 k=1

Using Abel’s summation by parts formula we get

NE

Zm:a k—1; Au(k — 1)) Ah(k—1) =

k=1

=~
Il

a(k —1; Au(k — 1))h(k) — i a(k —1; Au(k — 1)h(k - 1)
1 k=1

=D alk =1 Au(k = D)h(k) = 3 alk: Su(k)h(k)
k=1 k=0

=Y a(k—1; Au(k — 1)h(k) = > a(k; Au(k))h(k)
k=1 =

k=1
0, Au(0))h(0) 4+ a(m, Au(m))h(m).

IS
—~
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According to (Hs) and as h € H,,, it follows that

Xm:a — 1; Au(k — 1))Ah(k — 1) Zm:A (a —1; Au(k — 1))> h(k)

k=1

and finally J%(u; h) > 0 train —M(Xm: A(k—1, Au(k— 1))> zm: Aa(k—1; Au(k—1))h(k)—
k=1

m

A FO(ksu(k))h(k) > 0.

k=1

This means that 0y. € 0.J(u) and thus u satisfies (1.1).

Now, we recall some auxiliary results, which we use later on, see [12].

Lemma 4.4. The following properties hold.

(ay) For every s >0,

> (k)| < mlfull?, for all uw € Hy,.

(ag) For every s > 2,

, forall we Hy,.

- (2=s)
Y luk)) = m
k=1

(a3) For allu € H,y,,

m

S Il = )P <2l 1)

k=1
5. Multiple solutions of problem (1.1) by applying Theorem 2.2

Assume that F satisfies additionally the following.
(a4) There exist m-periodic functions s : Z — [2;+00), a1 : Z — (0, 400) and a function
o : Z — R for which

Fk,u) > oq(k)|ul*® + ay(k),

for all k € Z and uw € R" such that |u| > S, where S > 1 is fixed and sufficiently large.

Put s7 := min s(k); o7 := min oq(k); o, := min «s(k), where s, oy, - are func-
kEZ[1,m)] (k); o kEZ[1,m)] 1(k); g kEZ[1,m)] 2(k), P T2

tions defined above.

Assume further that
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F
(k, u) = 0 uniformly in k£ € Z.

(ag) There exist constants wy, wy, we > 0, with wy > wy > wyp, such that for all k € Z:
(ag) F(k,u) >0 with |u| < wp;
(ag) F(k,u) < 0 with w; < |u] < w,.
Ezample 5.1. As examples of functions satisfying assumptions (Hg) — (Hs) and (a4) — (ag)
we can give the following, where m > 2 is a fixed even natural number.
(1) F:Z x R™ given by
166 if [t < 1
F(k,t) = q —4lt| +3if [t € (5,1),
4t =1 —2if [t] > 1

and
(2) s:Z — [2,+00) such that

4it k=2l
s(k) == : ’
2ith=2+1; 1€

Lemma 5.2. Assume that conditions (Hy), (Hz), (Hg) and (a4) hold with s~ > ap™. Then,

the functional J,, is anti-coercive on H,,, for all A > 0.

Proof. . .
<Z_:A — 1, Au(k ))) - AZF(k,u(k:)).

One can use (;[1) to say that
3
Ak, €) = / a(k, N,
0
Using (Hs), we have the existence of a real C; > 0 such that

la(k,&)| < CL(1 4 [€PPY) forall ke Z andforall ¢eR"

Therefore,

€ 3
/ |a(k,>\)|d)\§01/ (14 (AP~ dA
0 0
)\p

£
<>]
(k)

< Cy[NJ§ + O

€17
p(k)

<Gl + G
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One deduces that

S | & u(k — 1P
ZA k—1,Aulk—1) < C Z —1]+CIZ “(k_l)
<C i(lﬂAu |P’€1>> Zmu )P
k=1
<mC) + (Cl + %) Z | A u(k —1)[P¢D,

k=1

Using the hypothesis (Hg) and according to the above result we have

u(k — 1)\1’('“_1)]

| A u(k — 1)]1”('“1))] .

/\ m B i m @
M(ZA(k: —1, Au(k — 1))) <= <ZA(I< — 1, Au(k — 1))) ]
k=1 > \=
B[ Cy
< —= -
= _1+m01+<01+p );|A
B, | Cy
< =
<= _(1+mC1)+ <<01+p );
As function x — z® being convex for all & > 1, then we have the inequality
(a+b)* < 2* Y (a® + b*),for all a,b € R.
Consequently, we have
B a—1 Cl -
(ZA —1 Au —1))) 2 (1+mC’1) (Cl_‘_?) (Z

Using the relation (a3) we get

k=1

| A u(k — 1)|p(k_1)> ] .

—~ [ & By 1 Ci\« + + @
_ _ < 229« ey ~1 aop D
M(kEI:A(k 1, Aulk 1))) < =227 (14 mOh) +(Cl+p_) m (2 P +1)
B2 a—1 [ ﬁ « aga—1[oapt apt
2 (14+mCy) +<Cl+p_> m2 (2 [|lul/S +1>
B
22a 1(1+mC1) _i_i(cl_’_g) a22a72

-I-*(CH

According to (a4), we have

C
o) Tmegeer o

Fk,u) > oq (k) |ul*® + as(k).

Consequently,



Using (az) we obtain

AN F(ku) < —Xaym E [lulll = Aagm.
k=1
Finally we get
B B Cr\@ B Ci\
Jn(u) € 2225 (1 mCy) 4+ 22 (O ) meatt 22 (0 L) e her” |y o
« «Q p o p
- /\ozl_m%HuHZ_ — Aagm.

Since s~ > ap™, we see that .J,, is anti-coercive on H,,.

Lemma 5.3. Assume that conditions (H,), (Hs), (Hg) and (ay) hold with s~ = ap™. Then

the functional J,, is anti-coercive on H,,, for any X\ € (Ao, +00), where

\ o 2R BiCy (p— + 1) ’

oy o P

Proof.
Based on the proof of Lemma 5.2, we get
2—5"

B C1\
=2 (C’l + —1) meQ2e2tert _ \arm 2
a p-

Im <

- B
]||u||g + 2207 (L mCy)

B Ch\
+ =2 (C’l + —1> m*2%7% — \aym.
« P

Thus, J,, is anti-coercive on H,, for any A € (Ao, +00).

Note that for any p™ > 1, the functional ||.||,+ : Y, — R defined by

i = (Z Ak - 1>rp*> p

k=1
is a norm on Y,, while it is obviously not a norm on H,,. Since all norms on Y, are equivalent,

therefore there exists a constant ¢ > 0 such that

m

(5.1) Yo IAulk =1 = (Jull

k=1
for all u € Yj,.

Theorem 5.4. Assume that conditions (Hy)-(Ho) and (a4),(as), (ag) hold with s— > ap*.
Let A > 0 be fized. Then problem (1.1) has at least three m-periodic solutions, at least two

of which are non-trivial.
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Proof.

Choose a positive real number € satisfying

B¢

<
= adm(p)e

1
By (as) and (ag) there exists p € (0,wp) with wy < 1 such that

(5.2) F(k,u) < €elul|® for |u| < p.

If w e Y, with ||ul]| < p then |u(k)| < p for all k € Z.
From hypothesis (H4) and (Hy),

B (& *
(ZA —1, Au(k ))) > Zl ZA(k—l,Au(k:—l)))
k=1
Bl 1 & )
> - _ 1)\|p(k—1)
> — p(k_l)Z]Au(k 1)]
k=1
1 & A
> = Au(k —1)P
- p+;! (k—1)] )
By using (5.1), it follows that
(& B,
(5.3) M( DAk =1, Au(k — 1)) 2a<p+)a
k=1

By using (5.2) we have

“A) CF(ku) > —Xe > fu(k)[*
k=1 k=1

Consequently,
T (u) > B - Aei lu(k)
T a(pt)e ot
B + _
> CH|ul|e? — Xem||ul|?
NPEE I [l
B - -
> @ — deml||ul|?
> Jul

By * — Xem
> [lull? <( )C A )20-
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Thus, the above relation together with (H;) and (Hg) yields
Im(u) > Jn(0) for alluw € Y, with [jull. < p.

Note also that for every u € W, we have Au(k —1) = 0 for all k € Z and then, according to
(H1)7 A(k’,O) =0; S0,

for all u € W,, Va € R™. If u € W, with ||u|. < p then |u(k)| < wy for all k € Z. Thus, by
(ay4) and (Hg) it follows that

Im(u) < J,(0) for all uwe W, with |jull. < p,where a € R™.

Let ¥,, = —J,. Using Lemma 5.2 we deduce that ¥,, satisfies the (PS) condition. Note
that W,, is bounded from below, moreover as V,, is coercive and continuous it admits a

minimizer. Using (b2) we obtain

inf W(u)=— sup J(u) <0.

uEHm ’U,EHm

We have shown that assumptions of Theorem 2.2 are satisfied, so W¥,, has at least three
critical points, at least two of them are non-zero critical points. By Lemma 4.3 these are

non-trivial m-periodic solutions of problem (1.1).

In the case s~ = ap™ we have the following special case.

Corollary 5.5. Assume that conditions (Hy)-(Hy) and (a4),(as), (ag) hold with s— = p*.
Let A € (Mg, +00). Then, problem (1.1) has at least three m-periodic solutions, at least two

of which are non-trivial.

6. Multiple solutions of problem (1.1) by three critical points theorem

In this pragraph we use the Theorem 3.3 to show the existence of multiple solutions for the
problem (1.1).
Let functionals u, J : H,, — R be defined by

F(k, u(k)).

m
k=1

p(u) == M(ZA(I{ — 1, Au(k — 1))) and J(u) = —

Then, we see that J,, = p+ A\J.
Assume that F' has the following properties.
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(Hyo) : There exists a constant C' € R such that
F(k,u) <C forall (k,u)€Z xR".

(Hyp) : There exist numbers 71, 79,73 > 0, 73 > 7 > 71 such that for all k € Z :
(Hy,) F(k,u) <0 with 0 < |u| <7,
(Hy)) F(k,u) > 0 with 7 < |u| < 73.

Ezample 6.1. As example of function satisfying assumptions (Hg) — (Hs) and (Hyo) — (Hi1)
we can give the following, where m > 2 is a fixed even natural number.
F 7 x R" given by
—sin|t| if [¢t] <,
F(k,t):=q |t —mx|if 7 <|t| < 2m,
mif |t| > 27

In this pragraph we will consider the problem (1.1) on Y.

Remark 6.2. The functional p is not coercive on H,,, but it is coercive on Y,, for a € R".
Indeed, given a sequence (uy,)nen such that u,(k) = a for all n € N and all k € Z, we see
that

w(uy) = M (ZA —1Aun(k:—1) (ZA —10):0.

k=1

Letting a — +o00, we see that p is not coercive on H,,. Furthermore, by using (5.3) we get

A?(kzm;A(k — 1, Au(k — 1))) > og(f-il-)a o

It is inferred that p is coercive on Y.

Let us note that the solutions obtained being in Y,, for a € R™; there are therefore no

constant solutions, however there may still be a zero solution.

Theorem 6.3. Assume that conditions (Hy) — (Hy1) hold. Then there exists X\ > 0 such
that problem (1.1) has at least three solutions in Y,, at least two of which are necessarily

non-zero.

Proof.

Based on previous results, u is coercive on Y, and is O, therefore, u verifies assumptions of
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Theorem 3.3.
According to the hypothesis (Hyg),

F(k,u(k)) < C = J(u) > —mC > —oc.

Hence J is bounded from below.
By (H;,) it follows that

—F(k,u(k)) <0,
for all u € Y, such that 7 < |u(k)| < 73 for all £ € Z. We thus deduce that there exists a
point u € Y, such that J(u) < 0. Consequently,

inf J(u) < 0.

u€Yy

By (H,,) and since p is continuous, coercive, convex, non-negative and x(0) = 0, we get that
there are s, > 0, such that J(u) > 0 for r < p(u) < s. Therefore, (by) is satisfied.
Now, by (Hg) and (H},) we obtain

JO)=0< inf J(u).

r<p(u)<s
Hence, condition (bs) is satisfied. Thus, by Theorem 3.3 we see that there exists A > 0 such
that the functional J,, has at least three critical points on Y,. Since by Lemma 4.3 critical

points of .J,,, are solutions of problem (1.1), hence the result follows.

For numbers rg, sg > 0 we put

r o= inf{||u||maz : p(u) > re} and s = sup{ |||l maz : p(u) < s},

where
mar — k)|.
Jullns = 1 [u(h)
Hence,
{ueY,:p(u)>re} C{u€Y,: ||[ume >}
and

’

{ueY,:plu) <so} C{ueY,: ||u|lme < s}

Assume that F satisfies the following.

(H1z) : There exist constants 7, sg > 0, rg < s¢ such that the following relations hold
(H,,) sup F(ko,u) < sup F(k,u) for some ko € Z[1, m];

[ul<s u€Rn

(H{y)F(k,u) <0 for all (k,u) € Z[1,m] x R* with r’ < |u| < 5.
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Example 6.4. As examples of functions satisfying assumptions (Hg) — (Hg), (Hyo) and (Hys)

we can give the following, where m > 2 is a fixed even natural number.
(1) F :Z x R™ given by

Sle] if |¢] < 2,
F(k,t) := q sin|t] if 27 < [¢| < 2m,
sin |t|a(k) if |t| > 2,

where a : Z — R is defined by

Lif k=2l
a(k) := 2! ’
lithk=2+1; leZ

Remark 6.5. Note that (H},) is equivalent to the following hypothesis.

(6.1) > sup Fk,t) < sup F(k,t);
k=1 [t|<s’ k=1 1R
in fact from (6.1) it is easy to get (H,,), since
(6.2) sup F(k,t) < sup F(k,t) for any s > 0 and for any k € Z[1, m].

[t|<s’ teR

On the other hand, since (6.1) is equivalent to the following

(supF(l,t)—sup F(l,t))—i—(sup F(2,t)—sup F(2,t)>+...+<supF(m,t)— sup F(m,t)) >

teR t]<s’ teR lt]<s’ teR lt|<s’
0, we get (6.1), noting again (6.2). Assumption (6.1) was used in the context of anisotropic

problems in [13].

Theorem 6.6. Let g, 50 > 0, 19 < so. Assume that conditions (Hy) — (Hyo) and (Hia) hold.
Then, there exists A > 0 such that problem (1.1) has at least three solutions on'Y,, at least

two of which are non-trivial.
Proof.

We will show that J,, verifies assumptions of Theorem 3.3. Clearly, p is coercive and is
of class C" on Y, p(0) = 0 and .J is bounded from below. By (H;,), we deduce that

m

inf J(u) = — sup F(k,u(i))
u€Ya ; {i€Z[1,m]:u(i)€R"}
< —Z sup F(kyu(i))= inf J(u)< inf J(u).
o1 {i€Z[1,mlu(i)<s'} [ullmas <s’ p(u)<so
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Thus, (by) is satisfied. For any u € Y, with ro < p(u) < so, we have " < [|t||;mae < 5.
By (H},), we obtain
inf  J(u) > inf  J(u)

ro<p(u)<so ' <ullman<s’
= — Z sup F(k,u(i)) > 0= J(0).
k=1 {I€Z[Lm]r’ <max;ezqy m [u(i)|<s'}
Therefore (b3) is satisfied. Finally, by Theorem 3.3 there exists A > 0 such that the function-
al J,, has at least three critical points in Y,. Consequently, by Lemma 4.3, problem (1.1)
has at least three solutions. Note that without the hypothesis (H},) it is possible to obtain
a type of small solutions, lying near the origin.

Let us consider the following remark.

Remark 6.7. Let ko € Z[1,m] be a fixed real. Since F(ko,t) < C for some C > 0, so

sup F(ko,t) = < C.

teR™

If 8 > 0 we can reason as follows. Since ¢t — F'(kq,t) is continuous and since F'(kq,0) = 0,

there exists sufficiently small positive s depending on /3 such that

—g < F(ko,t) < 2

Thus,
sup F'(ko,t) < sup F(ko,t).

|t| SS/ teR’!L

From the above remark we have the following result.
Corollary 6.8. Assume that conditions (Hy) — (Hy) and (H,y) hold. Let

sup F(ko,t) > 0,

teR™

for some ko € Z[1,m|. Then, there exists A > 0 such that problem (1.1) has at least three

solutions on'Y,, for a € R", at least two of which are non-trivial.

We can also replace (Hj,) with (H;,) provided that 7, is sufficiently large. Indeed, we can

reason as follows.

1
apt

B ¢* e /
I_C M . If (Hy,) is satisfied

a(pt)e’ B¢
with 7 > 7o, then (H,,) is also satisfied with s* = 7. The inequality p(u) < sq is equivalent

Remark 6.9. Let sq > 0<ry<sgand 19 = (o
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to

A/Z(Xm:A(k — 1, Au(k — 1))) < 5.

B B¢
Using (5.3) we obtain —iCO‘Hquf"+ < s9. Consequently, since sy > 1—5, we get
a(pt)e a(pt)
%
soa(pT)™ | "
ulle < T Boo
16

Since all norms on Y,, for a € R™ are equivalent, therefore, there exists a constant (5 > 0
such that [|u]|mae < Col|]e; hence

1

Soa(er)a apt
< 207\ )
HUHmax = CO B1C0‘
and
' soar(pt)® art
s = supq [|[ullmaz : () < s} = 207\ )
Pl (1) < s0} = Go| U0
Furthermore
300[(p+)a otp%
{ueY, : plu) <sp} C{ueY,:|ul < “Bia yc{ueY,: |ul <n}.
1
B¢ soa(p™)” >
Corollary 6.10. Let so > ———— , 0 <1rg < sg and 19 = (o | ———— . Assume that
a(pt)e B¢~

conditions (Hyy — (Hyo) and (Hy,) hold. If moreover (Hy,) is satisfied with 7 > 9, then
there exists A > 0 such that problem (1.1) has at least three solutions on'Y,, for a € R", at

least two of which are non-trivial.

Analogously we obtain the following.

1

ap™

ﬂ M . Assume that

a(pt)*’ B¢~
conditions (Hy) — (Hyo) and (H,y) hold. If moreover (H,,) is satisfied with 7 > Ty, then
there exists X > 0 such that problem (1.1) has at least three solutions on Yy, for a € R", at

Corollary 6.11. Let s < 0 <1y <syandTty=_

least two of which are non-trivial.

46



[1]

2]

REFERENCES

R.P. Agarwal, K. Perera, D. ORegan, Multiple positive solutions of singu- lar and nonsingular discrete
problems via variational methods, Nonlinear Anal., 58 (2004), 69-73.

R.P. Agarwal, K. Perera, D. ORegan, Multiple positive solutions of singu- lar discrete p-Laplacian
problems via variational methods, Adv. Diff. Equ., 2 (2005), 93-99.

G. Bonanno, P. Candito, Nonlinear difference equations investigated via critical point methods,
Nonlinear Ana, 70 (2009), 3180-3186.

A. Cabada, A. Lannizzotto, S. Tersian, Multiple solutions for discrete boundary value problems, J.
Math. Anal. Appl., 356 (2009), 418-428.

P. Candito, N. Giovannelli, Multiple solutions for a discrete boundary value problem involving the
p-Laplacian, Math. Appl. Comput., 56 (2008), 959- 964.

X. Cai, J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal.
Appl., 320 (2006), 649-661.

G. F. Carrier; A note on the vibrating string, Quart. Appl. Math. 7 (1949), 97-101.

G. F. Carrier; On the nonlinear vibration problem of the elastic string, Quart. Appl. Math. 3 (1945),
157-165.

K.-C. F. Chang; Variational methods for non-differentiable functionals and their applications to partial
differential equations, J. Math. Anal. Appl. 80(1) (1981), pp. 102-129.

F.H. Clarke; Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, Vol. 5, STAM,
Philadelphia, 1990.

M. Galewski, G. M. Bisci and R. Wieteska; Existence and multiplicity of solutions to discrete inclusions
with the p(k)-Laplacian problem, J.Difference Equ.Appl.21, No. 10(2015), 887-903.

M. Galewski and R. Wieteska; Multiple solutions for periodic problems with the discrete p(k)-Laplacian,
Discrete Contin. Dyn. Syst. Ser. B 19(8) (2014), pp. 2535-2547.

M. Galewski and S. Glab; On the discrete boundary value problem for anisotropic equation, Math.
Anal. Appl. 386(2) (2012), pp. 956-965.

47



[14]

[15]

A. Guiro, I. Nyanquini, S. Ouaro, On the solvability of discrete nonlin- ear Neumann problems involving
the p(x)-Laplacian, Adv. Diff. Equ., 32 (2011).

P. Jebelean, C. Serban, Ground state periodic solutions for difference equa- tions with discrete
p-Laplacian, Appl. Math. Comput., 217 (2011), 9820- 9827.

G. Kirchhoff; Vorlesungen uber mathematische Physik: Mechanik, Teubner, Leipzig, 1876.
B. Koné, I. Nyanquini and S. Ouaro; Weak solutions to discrete nonlinear two-point boundary-value
problems of Kirchhoff type, Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 105,

pp- 1-10.

B. Kone, S. Ouaro, Weak solutions for anisotropic discrete boundary value problems, J. Diff. Equ.
Appl. (2010), 1-11.

A. Kristaly, V. Radulescu and Cs Varga; Variational Principles in Mathematical Physics, Geometry,
and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia

of Mathematics and Its Applications, No. 136, Cambridge University Press, Cambridge, 2010.

R.A. Mashiyev, Z. Yucedag, S. Ogras, Existence and multiplicity of solu- tions for a Dirichlet problem
involving the discrete p(z)-Laplacian operator, E.J. Qualitative Theory of Diff. Equ., 67 (2011), 1-10.

M. Mihailescu, V. Radulescu, S. Tersian, Eigenvalue problems for anisotropic discrete boundary value
problems, J. Difference Equ. Appl., 15 (2009), 557-567.

D. Motreanu and V. Radulescu; Variational and Non-Variational Methods in Nonlinear Analysis and
Boundary Value Problems, Nonconvex Optimization and Its Applications, Vol. 67, Kluwer Academic

Publishers, Dordrecht, 2003.

D. Motreanu and Cs Varga; Some critical point result for locally Lipschitz functionals, Comm. Appl.
Nonlinear Anal. 4 (1997), pp. 17-33.

R. Narashima; Nonlinear vibration of an elastic string, J. Sound Vibration 8 (1968), 134-146.

D. W. Oplinger; Frequency response of a nonlinear stretched string, J. Acoustic Soc. Amer. 32(1960),
1529-1538.

X. Wu; A new critical point theorem for locally Lipschitz functionals with applications to differential
equations, Nonlinear Anal. 66(3) (2007), pp. 624-638.

48



[27] J. Yu, Z. Guo, On boundary value problems for a discrete generalized Emden-Fowler equation, J.

Math. Anal. Appl., 231 (2006), 18-31.

[28] Z. Yucedag; Existence of solutions for anisotropic discrete boundary value problems of Kirchhoff

type,1364 (2014), 1-15.

[29] G. Zhang, S. Liu, On a class of semipositone discrete boundary value prob- lem, J. Math. Anal. Appl.,
325 (2007), 175-182.

49



