
Asia Pacific Journal of Mathematics, Vol. 5, No. 1 (2018), 27-49 ISSN 2357-2205

MULTIPLICITY OF SOLUTIONS TO DISCRETE INCLUSIONS WITH
THE p(k)-LAPLACE KIRCHHOFF TYPE EQUATIONS

STANISLAS OUARO∗, MALICK ZOUNGRANA
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1. Introduction

In this work, we study the existence and multiplicity of solutions to discrete inclusions of

the following Kirchhoff type problem

(1.1)


−M

(
A(k − 1,∆u(k − 1))

)
∆
(
a(k − 1,∆u(k − 1))

)
∈ λ∂F (k, u(k)), k ∈ Z

u(k +m) = u(k),∀ k ∈ Z,

where ∆u(k) = u(k + 1)− u(k) is the forward difference operator, u(k) ∈ Rn for all k ∈ Z;

a(k, .): Rn → Rn is a continuous function for all k ∈ Z and there exists a mapping A :

Z × Rn −→ Rn satisfying a(k, ξ)=
∂A(k, ξ)

∂ξ
, ∀k ∈ Z and A(k, 0) = 0 for all k ∈ Z. Let

the function F : Z × Rn −→ Rn and ∂F (k, u) denotes the Clarke subdifferential of F with

respect to the second variable. Recall that if f : X −→ Rn is a locally Lipschitz functional

and x ∈ X, the Clarke subdifferential of f at the point x is the nonempty subset ∂f(x) of
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X∗ which is defined by

∂f(x) := {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f 0(x; v), for all v ∈ X},

where f 0(x; v) is the generalized directional derivative of f at the point x along the direction

v (to be defined later).

Here, λ is a positive real parameter and m ≥ 2 is a fixed natural number.

M(t) is a continuous function that satisfy some conditions which will be stated later on.

Here, we are interested in investigating nonlinear discrete boundary value problems by using

variational approach. We refer to [1, 2, 3, 4, 5, 6, 14, 15, 18, 19, 20, 21, 27, 29] and the

references therein for more details about discrete boundary value problems.

Problem (1.1) has its origin in the theory of non linear vibration. For instance, the following

equation describes the free vibration of a stretched string (see [24])

(1.2) ρ
∂2u

∂t2
=
(
T0 +

Ea

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2

where ρ > 0 is the mass per unit length, T0 is the base tension, E is the Young modulus, a

is the area of cross section and L is the initial length of the string.

Equation (1.2) takes into account the change of the tension on the string which is caused

by the change of its length during the vibration. The nonlocal equation of this type was

firstly proposed by Kirchhoff in 1876 (see [16]). After that, several physicists also considered

such equations for their researches in the theory of nonlinear vibrations theoretically or

experimentally [7, 8, 24, 25] . As far as we know, the first study which deals with anisotropic

discrete boundary-value problems of p(.)-Kirchhoff type difference equation was done by

Yucedag (see [28]). A more general study of the problem of Yucedag has been done by Koné

et al (see [17]). In this paper our aim is to establish the existence and multiplicity results

for problem (1.1) through variational methods.

We will use some abstract tools contained in [23, 26] studying the above anisotropic discrete

inclusions.

The remaining part of this article is organized as follows: some usefull preliminary results

are presented in Section 2. In Section 3, we recall the new abstract critical point theorems

established in [11], while Section 4 is devoted to the multiplicity results for problem (1.1).

2. Basic definitions and preliminary results

Let (E, ‖.‖) be a real Banach space. We denote by E∗ the dual space of E, while 〈, 〉 stands

for the duality pairing between E∗ and E.

A function J : E −→ R is called locally Lipschitz continuous, if for every u ∈ E, there exist
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a neighbourhood Vu of u and a constant Lu ≥ 0 such that

|J(z)− J(w)| ≤ Lu‖z − w‖ for all z, w ∈ Vu.

If u, z ∈ E, we write J0(u; z) for the generalized directional derivative of J at the point u

along the direction z, i.e.

J0(u; z) := lim
w→u

sup
t→0+

J(w + tz)− J(w)

t
.

The generalized gradient of the function J in u, denoted by ∂J(u), is the set

∂J(u) := {u∗ ∈ E∗ : 〈u∗, z〉 ≤ J0(u; z), for all z ∈ E}.

The basic properties of generalized directional derivative and generalized gradient were s-

tudied in [9, 10].

We recall that if J is continuously Gâteaux differentiable at u, then J is locally Lipschitz at

u and ∂J(u) = {J ′(u)}, where J
′
(u) stands for the first derivative of J at u.

Furthermore, a point u is called a (generalized) critical point of the locally Lipschitz contin-

uous function J , if 0E∗ ∈ ∂J(u), i.e.

J0(u; z) ≥ 0, for every z ∈ E.

Clearly, if J is continuously Gâteaux differentiable at u, then u becomes a (classical) critical

point of J , that is J ′(u) = 0E∗ .

A locally Lipschitz continuous functional J : E −→ R is said to fulfil the Palais-Smale

(PS) condition if every sequence {un} in E such that {J(un)} is bounded and

J0(un;u− un) ≥ −εn‖u− un‖

for all u ∈ E, where εn −→ 0+ as n −→∞, possesses a convergent subsequence.

Definition 2.1. A function f defined on a normed space X to R is said to be coercive over

an unbounded part P of X if lim
‖x‖−→+∞

f(x) = +∞, where x ∈ P . f is said to be anti-coercive

if (−f) is coercive.

For a complete overview on the non-smooth calculus we refer the readers to the paper [22].

Furthermore, let’s cite a recent book [19] as a general reference on the subject of our paper.

Our main tool will be the following abstract critical point theorems, for locally Lipschitz

continuous functions that we recall here, for completeness, in their general form.
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Theorem 2.2. ([26], Theorem 2.3) Let E be a real Banach space. Assume that E := E1⊕E2,

with E2 finite-dimensional subspace of E. Let J : E −→ R be a locally Lipschitz continuous

functional satisfying the (PS) condition and such that

J(u) ≤ 0,
(
∀u ∈ B(0, ρ) ∩ E2

)
,

J(u) ≥ 0,
(
∀u ∈ B(0, ρ) ∩ E1

)
,

for some ρ > 0.

Assume also that J is bounded from below and inf
u∈E

J(u) < 0. Then, J has at least two

non-zero critical points.

Theorem 2.3. [23] Let (E, ‖.‖) be a real Banach space and let J : E −→ R be a locally

Lipschitz continuous functional satisfying (PS) condition. If there exist u1, u2 ∈ E, u1 6= u2

and r ∈ (0, ‖u2 − u1‖) such that inf{J(u) : ‖u − u1‖ = r} ≥ max{J(u1), J(u2)} and we

denote by Γ the family of continuous paths γ : [0, 1] −→ E joining u1 and u2, then

c := inf
γ∈Γ

max
s∈[0,1]

J(γ(s)) ≥ max{J(u1), J(u2)} is a critical value for E and Kc − {u1, u2} 6= ∅,

where Kc is the set of critical points at the level c.

We now make the following assumptions on the data.

(H1) : ∃ A: Z × Rn → Rn with a(k, ξ)=
∂A(k, ξ)

∂ξ
, ∀k ∈ Z, ξ ∈ Rn and A(k, 0) = 0 for all

k ∈ Z.

(H2) : ∃C1 > 0 such that |a(k, ξ)| 6 C1(1 + |ξ|p(k)−1), ∀k ∈ Z and ∀ξ ∈ Rn.

(H3) : (a(k, ξ)− a(k, η)).(ξ − η) > 0, ∀(ξ, η) ∈ Rn × Rn such that ξ 6= η and ∀k ∈ Z.
(H4) : |ξ|p(k) ≤ a(k, ξ).ξ ≤ p(k)A(k, ξ), ξ ∈ Rn and p : Z → (2,+∞), where p is an

m-periodic function, i.e. p(k +m) = p(k), ∀k ∈ Z.
(H5) : a is an m-periodic function with respect to k, i.e. a(m+k, ξ) = a(k, ξ) for all (k, ξ) ∈

Z× Rn.

(H6) : F is an m-periodic function with respect to k, i.e. F (k, u) = F (k + m,u) for all

(k, u) ∈ Z× Rn.

(H7) : F (k, .) is locally Lipschitz continuous for all k ∈ Z.

(H8) : F (k, 0) = 0 for all k ∈ Z.

(H9) : M : (0,+∞) −→ (0,+∞) is continuous and nondecreasing and there exist positive

reals B1, B2 with B1 ≤ B2 and α > 1 such that

B1t
α−1 ≤M(t) ≤ B2t

α−1 for t ≥ t∗ > 0.
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Example 2.4. As examples of functions satisfying assumptions (H1)− (H9), we can give the

following.

(1) M(A(k, ξ))=
1

p(k)
|ξ|p(k) = 1, where M(t) = 1 and a(k, ξ) = |ξ|p(k)−2.ξ, for k ∈ Z and

ξ ∈ Rn.

(2) M(A(k, ξ))= a +
b

p(k)

[
(1 + |ξ|2)

p(k)
2 − 1

]
, where M(t) = a + bt and a(k, ξ) = (1 +

|ξ|2)(p(k)−2)/2.ξ, for k ∈ Z and ξ ∈ Rn.

(3) F : Z× Rn given by

F (k, t)


16t4 if |t| ≤ 1

2
,

−4|t|+ 3 if |t| ∈ (1
2
, 1),

t4 + |t− 1| − 2 if |t| ≥ 1.

3. Three critical points theorem for locally Lipschitz functionals

In this section we recall the tools used in [11].

Theorem 3.1. Let (X, τ) be an Hausdorff space and Φ, J : X −→ R be functionals. Let M

be the set (possibly empty) of all the global minimizers of J and define

α := inf
x∈X

Φ(x),

β :=

 inf
x∈M

Φ(x) if M 6= ∅

sup
x∈X

Φ(x) if M = ∅.

Let α < β and assume that the set

{x ∈ X : Φ(x) + σJ(x) ≤ ρ},

for every σ > 0 and every ρ ∈ R, is sequentially compact (if not empty). Then at least one

of the following conditions holds.

(a) There exists a continuous mapping h : (α, β) −→ X with the following property: for

every t ∈ (α, β),

Φ(h(t)) = t

and for every x ∈ Φ−1(t) with x 6= h(t),

J(x) > J(h(t)).
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(b) There exists λ > 0 such that the functional Φ + λJ admits at least two global minimizers

in X.

Theorem 3.2. Let E be a finite dimensional real Banach space. Let µ : E −→ R be a

coercive C1 functional such that µ(0) = 0 and let J : E −→ R be locally Lipschitz. Let s > 0

and 0 < r < s be fixed. Assume that

(b1) lim
µ(u)−→+∞

inf
J(u)

µ(u)
≥ 0;

(b2) inf
u∈E

J(u) < inf
µ(u)≤s

J(u);

(b3) J(0) ≤ inf
r≤µ(u)≤s

J(u).

Then, there exists λ > 0 such that the functional µ+ λJ has at least three critical points in

E, at least two of which are non-trivial.

Theorem 3.3. Let E be a finite dimensional real Banach space. Let µ : E −→ R be a

coercive C1 functional such that µ(0) = 0 and let J : E −→ R be a locally lipschitz functional

bounded from below. Let s > 0 and 0 < r < s be fixed constants. Assume moreover that

conditions (b2) and (b3) hold. Then there exists λ > 0 such that the functional µ + λJ has

at least three critical points in E.

4. Variational framework and auxiliary results

From now on, we will use the following notations.

p+ := max
k∈Z[1,m]

p(k) and p− := min
k∈Z[1,m]

p(k),

where Z[a, b] := {a, a+ 1, ..., b}, with a,b ∈ N such that a ≤ b.

Define the space

Hm =
{
u = {u(k)}k∈Z : u(k) ∈ Rn, u(k +m) = u(k), k ∈ Z

}
,

which equipped with the Euclidean norm

‖u‖e :=

(
m∑
k=1

|u(k)|2
) 1

2

becomes an Hilbert space.

Put for any a ∈ Rn,
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Wa :=
{
u = {u(k)}k∈Z : u(k) = a, k ∈ Z

}
and Ya := W⊥

a .

Thus, Wa consists of constant sequences and we have an orthogonal decomposition

Hm = Ya ⊕Wa, for any a ∈ Rn.

The energy functional corresponding to (1.1) is

Jm(u) = M̂
( m∑
k=1

A(k − 1,∆u(k − 1))
)
− λ

m∑
k=1

F (k, u(k)),

where M̂(t) =
∫ t

0
M(s)ds.

Definition 4.1. A solution of problem (1.1) is a function u ∈ Hm such that

−M
( m∑
k=1

A(k − 1,∆u(k − 1))
) m∑
k=1

∆(a(k − 1; ∆u(k − 1)))h(k)− λ
m∑
k=1

F 0(k;u(k))h(k) ≥ 0,

for all h ∈ Hm with h(k) ≥ 0 and for all k ∈ Z.

Proposition 4.2. Assume that (H1), (H2), (H6) and (H9) hold. Then Jm is locally Lipschitz

continuous.

Proof.
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∣∣J(z)− J(w)
∣∣ =

∣∣∣M̂( m∑
k=1

A(k − 1,∆z(k − 1))
)
− M̂

( m∑
k=1

A(k − 1,∆w(k − 1))
)

− λ
m∑
k=1

F (k, z(k)) + λ
m∑
k=1

F (k, w(k))
∣∣∣

≤
∣∣∣M̂( m∑

k=1

A(k − 1,∆z(k − 1))
)
− M̂

( m∑
k=1

A(k − 1,∆w(k − 1))
)∣∣∣

+ λ
m∑
k=1

∣∣∣F (k, z(k))− F (k, w(k))
∣∣∣

=

∣∣∣∣∣
∫ m∑

k=1

A(k − 1,∆z(k − 1))

m∑
k=1

A(k − 1,∆w(k − 1))

M(t)dt

∣∣∣∣∣+ λ
m∑
k=1

∣∣∣F (k, z(k))− F (k, w(k))
∣∣∣

≤
∫ m∑

k=1

A(k − 1,∆z(k − 1))

m∑
k=1

A(k − 1,∆w(k − 1))

B2t
α−1dt+ λ

m∑
k=1

∣∣∣F (k, z(k))− F (k, w(k))
∣∣∣

≤ B2

α

[(
m∑
k=1

A(k − 1,∆z(k − 1))

)α

−

(
m∑
k=1

A(k − 1,∆w(k − 1))

)α]

+ λ
m∑
k=1

∣∣∣F (k, z(k))− F (k, w(k))
∣∣∣.

If w = z then, J(z) = J(w). Consequently, ∃K1 > 0 such that |J(z)− J(w)| ≤ K1‖z −w‖e.

If z 6= w then, ‖w−z‖ 6= 0 and since the quantity

[(
m∑
k=1

A(k−1,∆z(k−1))

)α

−

(
m∑
k=1

A(k−

1,∆w(k − 1))

)α]
is finite then, ∃K2 > 0 such that

[(
m∑
k=1

A(k − 1,∆z(k − 1))

)α

−

(
m∑
k=1

A(k − 1,∆w(k − 1))

)α]
≤ K2‖z − w‖e.

Consequently, since F (k, .) is locally Lipschitz continuous then for all u ∈ Hm, there exist a

neighbourhood Vu of u and constant C2 ≥ 0 such that |F (k, z(k))−F (k, w(k))| ≤ C2‖z−w‖e.
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We can deduce that

|J(z)− J(w)| ≤ B2

α
K2‖z − w‖e + λmC2‖z − w‖e

≤ L‖z − w‖e,with L =
B2

α
K2 + λmC2.

Lemma 4.3. Let u ∈ Hm be a critical point of Jm. Then, u satisfies problem (1.1).

Proof.

Assume that u ∈ Hm is a critical point of Jm. Then, for any h ∈ Hm, J0(u;h) ≥ 0.

We have

J(w + th) = M̂
( m∑
k=1

A(k − 1,∆(w + th)(k − 1))
)
− λ

m∑
k=1

F (k, (w + th)(k))

= M̂
( m∑
k=1

A(k − 1,∆w(k − 1) + t∆h(k − 1))
)
− λ

m∑
k=1

F (k, w(k) + th(k));

consequently

J(w + th)− J(w) = M̂
( m∑
k=1

A(k − 1,∆w(k − 1) + t∆h(k − 1))
)
− M̂

( m∑
k=1

A(k − 1,∆w(k − 1))
)

− λ
m∑
k=1

F (k,w(k) + th(k)) + λ

m∑
k=1

F (k,w(k))

= M̂
( m∑
k=1

A(k − 1,∆w(k − 1) + t∆h(k − 1))
)
− M̂

( m∑
k=1

A(k − 1,∆w(k − 1))
)

− λ

[
m∑
k=1

F (k,w(k) + th(k))−
m∑
k=1

F (k,w(k))

]
.

By dividing by t and by making t tend towards 0 and w towards u, we obtain

J0(u;h) = M
( m∑
k=1

A(k−1,∆u(k−1))
) m∑
k=1

a(k−1; ∆u(k−1))∆h(k−1)−λ
m∑
k=1

F 0(k;u(k))h(k).

Using Abel’s summation by parts formula we get

m∑
k=1

a(k − 1;4u(k − 1))4 h(k − 1) =

m∑
k=1

a(k − 1;4u(k − 1))h(k)−
m∑
k=1

a(k − 1;4u(k − 1)h(k − 1)

=

m∑
k=1

a(k − 1;4u(k − 1))h(k)−
m−1∑
k=0

a(k;4u(k))h(k)

=

m∑
k=1

a(k − 1;4u(k − 1))h(k)−
m∑
k=1

a(k;4u(k))h(k)

− a(0,4u(0))h(0) + a(m,4u(m))h(m).
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According to (H5) and as h ∈ Hm, it follows that

m∑
k=1

a(k − 1; ∆u(k − 1))∆h(k − 1) = −
m∑
k=1

∆

(
a(k − 1; ∆u(k − 1))

)
h(k)

and finally J0(u;h) ≥ 0 train −M
( m∑
k=1

A(k−1,∆u(k−1))
) m∑
k=1

∆(a(k−1; ∆u(k−1))h(k)−

λ
m∑
k=1

F 0(k;u(k))h(k) ≥ 0.

This means that 0H∗m ∈ ∂J(u) and thus u satisfies (1.1).

Now, we recall some auxiliary results, which we use later on, see [12].

Lemma 4.4. The following properties hold.

(a1) For every s > 0,
m∑
k=1

|u(k)|s 6 m‖u‖se, for all u ∈ Hm.

(a2) For every s > 2,

m∑
k=1

|u(k)|s > m
(2−s)

2 ‖u‖se, for all u ∈ Hm.

(a3) For all u ∈ Hm,

m∑
k=1

|4u(k − 1)|p(k−1) 6 m

(
2p

+‖u‖p+e + 1

)
.

5. Multiple solutions of problem (1.1) by applying Theorem 2.2

Assume that F satisfies additionally the following.

(a4) There exist m-periodic functions s : Z −→ [2; +∞), α1 : Z −→ (0,+∞) and a function

α2 : Z −→ R for which

F (k, u) ≥ α1(k)|u|s(k) + α2(k),

for all k ∈ Z and u ∈ Rn such that |u| ≥ S, where S ≥ 1 is fixed and sufficiently large.

Put s− := min
k∈Z[1,m]

s(k); α−1 := min
k∈Z[1,m]

α1(k); α−2 := min
k∈Z[1,m]

α2(k), where s, α1, α2 are func-

tions defined above.

Assume further that
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(a5) lim
|u|→0

F (k, u)

|u|s−
= 0 uniformly in k ∈ Z.

(a6) There exist constants ω0, ω1, ω2 > 0, with ω2 > ω1 > ω0, such that for all k ∈ Z:

(a
′
6) F (k, u) ≥ 0 with |u| ≤ ω0;

(a
′′
6) F (k, u) < 0 with ω1 ≤ |u| ≤ ω2.

Example 5.1. As examples of functions satisfying assumptions (H6) − (H8) and (a4) − (a6)

we can give the following, where m ≥ 2 is a fixed even natural number.

(1) F : Z× Rn given by

F (k, t) :=


16t4 if |t| ≤ 1

2
,

−4|t|+ 3 if |t| ∈ (1
2
, 1),

t4 + |t− 1| − 2 if |t| ≥ 1

and

(2) s : Z→ [2,+∞) such that

s(k) :=

{
4 if k = 2l,

2 if k = 2l + 1; l ∈ Z.

Lemma 5.2. Assume that conditions (H1), (H2), (H9) and (a4) hold with s− > αp+. Then,

the functional Jm is anti-coercive on Hm, for all λ > 0.

Proof.

Jm(u) = M̂
( m∑
k=1

A(k − 1,∆u(k − 1))
)
− λ

m∑
k=1

F (k, u(k)).

One can use (H1) to say that

A(k, ξ) =

∫ ξ

0

a(k, λ)dλ.

Using (H2), we have the existence of a real C1 > 0 such that

|a(k, ξ)| 6 C1(1 + |ξ|p(k)−1) for all k ∈ Z and for all ξ ∈ Rn.

Therefore, ∫ ξ

0

|a(k, λ)|dλ ≤ C1

∫ ξ

0

(1 + |λ|p(k)−1)dλ

≤ C1[λ]ξ0 + C1[
λp(k)

p(k)
]ξ0

≤ C1|ξ|+ C1
|ξ|p(k)

p(k)
.
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One deduces that
m∑
k=1

A(k − 1,4u(k − 1)) ≤ C1

m∑
k=1

| 4 u(k − 1)|+ C1

m∑
k=1

| 4 u(k − 1)|p(k−1)

p(k − 1)

≤ C1

m∑
k=1

(
1 + | 4 u(k − 1)|p(k−1)

)
+
C1

p−

m∑
k=1

| 4 u(k − 1)|p(k−1)

≤ mC1 +
(
C1 +

C1

p−

) m∑
k=1

| 4 u(k − 1)|p(k−1).

Using the hypothesis (H9) and according to the above result we have

M̂

(
m∑
k=1

A(k − 1,4u(k − 1))

)
≤ B2

α

[(
m∑
k=1

A(k − 1,∆u(k − 1))

)α]

≤ B2

α

[
1 +mC1 +

(
C1 +

C1

p−

) m∑
k=1

| 4 u(k − 1)|p(k−1)

]α

≤ B2

α

[
(1 +mC1) +

((
C1 +

C1

p−

) m∑
k=1

| 4 u(k − 1)|p(k−1)

)]α
.

As function x 7−→ xα being convex for all α > 1, then we have the inequality

(a+ b)α ≤ 2α−1(aα + bα), for all a, b ∈ R.

Consequently, we have

M̂

(
m∑
k=1

A(k − 1,4u(k − 1))

)
≤ B2

α
2α−1

[
(1 +mC1)α +

(
C1 +

C1

p−

)α( m∑
k=1

| 4 u(k − 1)|p(k−1)

)α]
.

Using the relation (a3) we get

M̂

(
m∑
k=1

A(k − 1,4u(k − 1))

)
≤ B2

α
2α−1

[
(1 +mC1)α +

(
C1 +

C1

p−

)α
mα
(

2p
+

‖u‖p
+

e + 1
)α]

≤ B2

α
2α−1

[
(1 +mC1)α +

(
C1 +

C1

p−

)α
mα2α−1

(
2αp

+

‖u‖αp
+

e + 1
)]

≤ B2

α
2α−1(1 +mC1)α +

B2

α

(
C1 +

C1

p−

)α
mα22α−2

+
B2

α

(
C1 +

C1

p−

)α
mα22α−2+αp+‖u‖αp

+

e .

According to (a4), we have

F (k, u) ≥ α1(k)|u|s(k) + α2(k).

Consequently,

−λ
m∑
k=1

F (k, u) ≤ −λ
m∑
k=1

(
α1(k)|u(k)|s(k) + α2(k)

)
.
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Using (a2) we obtain

−λ
m∑
k=1

F (k, u) ≤ −λα−1 m
2−s−

2 ‖u‖s−e − λα−2 m.

Finally we get

Jm(u) ≤ B2

α
2α−1(1 +mC1)α +

B2

α

(
C1 +

C1

p−

)α
mα22α−2 +

B2

α

(
C1 +

C1

p−

)α
mα22α−2+αp+‖u‖αp+e

− λα−1 m
2−s−

2 ‖u‖s−e − λα−2 m.

Since s− > αp+, we see that Jm is anti-coercive on Hm.

Lemma 5.3. Assume that conditions (H1), (H2), (H9) and (a4) hold with s− = αp+. Then

the functional Jm is anti-coercive on Hm, for any λ ∈ (λ0,+∞), where

λ0 =
(2m)2α−2+s−B2C

α
1

α−1 α

(
p− + 1

p−

)α

.

Proof.

Based on the proof of Lemma 5.2, we get

Jm ≤

[
B2

α

(
C1 +

C1

p−

)α
mα22α−2+αp+ − λα−1 m

2− s−

2

]
‖u‖s−e +

B2

α
2α−1(1 +mC1)α

+
B2

α

(
C1 +

C1

p−

)α
mα22α−2 − λα−2 m.

Thus, Jm is anti-coercive on Hm for any λ ∈ (λ0,+∞).

Note that for any p+ ≥ 1, the functional ‖.‖p+ : Ya −→ R defined by

‖u‖p+ :=

(
m∑
k=1

|∆u(k − 1)|p+
) 1

p+

is a norm on Ya, while it is obviously not a norm on Hm. Since all norms on Ya are equivalent,

therefore there exists a constant ζ > 0 such that

(5.1)
m∑
k=1

| 4 u(k − 1)|p+ ≥ ζ‖u‖p+e ,

for all u ∈ Ya.

Theorem 5.4. Assume that conditions (H1)-(H9) and (a4),(a5), (a6) hold with s− > αp+.

Let λ > 0 be fixed. Then problem (1.1) has at least three m-periodic solutions, at least two

of which are non-trivial.
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Proof.

Choose a positive real number ε satisfying

ε ≤ B1ζ
α

αλm(p+)α
.

By (a5) and (a6) there exists ρ ∈ (0, ω0) with ω0 <
1

4
such that

(5.2) F (k, u) ≤ ε|u|s− for |u| ≤ ρ.

If u ∈ Ya with ‖u‖ ≤ ρ then |u(k)| ≤ ρ for all k ∈ Z.

From hypothesis (H4) and (H9),

M̂

(
m∑
k=1

A(k − 1,4u(k − 1))

)
≥ B1

α

(
m∑
k=1

A(k − 1,∆u(k − 1))

)α

≥ B1

α

(
1

p(k − 1)

m∑
k=1

|∆u(k − 1)|p(k−1)

)α

≥ B1

α

(
1

p+

m∑
k=1

|∆u(k − 1)|p+
)α

.

By using (5.1), it follows that

(5.3) M̂

(
m∑
k=1

A(k − 1,∆u(k − 1))

)
≥ B1

α(p+)α
ζα‖u‖αp+e .

By using (5.2) we have

−λ
m∑
k=1

F (k, u) ≥ −λε
m∑
k=1

|u(k)|s− .

Consequently,

Jm(u) ≥ B1

α(p+)α
ζα‖u‖αp+e − λε

m∑
k=1

|u(k)|s−

≥ B1

α(p+)α
ζα‖u‖αp+e − λεm‖u‖s−e

≥ B1

α(p+)α
ζα‖u‖s−e − λεm‖u‖s

−

e

≥ ‖u‖s−e

(
B1

α(p+)α
ζα − λεm

)
≥ 0.
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Thus, the above relation together with (H1) and (H8) yields

Jm(u) ≥ Jm(0) for all u ∈ Ya with ‖u‖e ≤ ρ.

Note also that for every u ∈ Wa we have ∆u(k− 1) = 0 for all k ∈ Z and then, according to

(H1), A(k, 0) = 0; so,

Jm(u) = −λ
m∑
k=1

F (k, u(k)),

for all u ∈ Wa, ∀a ∈ Rn. If u ∈ Wa with ‖u‖e ≤ ρ then |u(k)| ≤ ω0 for all k ∈ Z. Thus, by

(a4) and (H8) it follows that

Jm(u) ≤ Jm(0) for all u ∈ Wa with ‖u‖e ≤ ρ,where a ∈ Rn.

Let Ψm = −Jm. Using Lemma 5.2 we deduce that Ψm satisfies the (PS) condition. Note

that Ψm is bounded from below, moreover as Ψm is coercive and continuous it admits a

minimizer. Using (b2) we obtain

inf
u∈Hm

Ψ(u) = − sup
u∈Hm

J(u) < 0.

We have shown that assumptions of Theorem 2.2 are satisfied, so Ψm has at least three

critical points, at least two of them are non-zero critical points. By Lemma 4.3 these are

non-trivial m-periodic solutions of problem (1.1).

In the case s− = αp+ we have the following special case.

Corollary 5.5. Assume that conditions (H1)-(H9) and (a4),(a5), (a6) hold with s− = p+.

Let λ ∈ (λ0,+∞). Then, problem (1.1) has at least three m-periodic solutions, at least two

of which are non-trivial.

6. Multiple solutions of problem (1.1) by three critical points theorem

In this pragraph we use the Theorem 3.3 to show the existence of multiple solutions for the

problem (1.1).

Let functionals µ, J : Hm −→ R be defined by

µ(u) := M̂

(
m∑
k=1

A(k − 1,∆u(k − 1))

)
and J(u) := −

m∑
k=1

F (k, u(k)).

Then, we see that Jm = µ+ λJ .

Assume that F has the following properties.
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(H10) : There exists a constant C ∈ R such that

F (k, u) ≤ C for all (k, u) ∈ Z× Rn.

(H11) : There exist numbers τ1, τ2, τ3 > 0, τ3 > τ2 > τ1 such that for all k ∈ Z :

(H
′
11) F (k, u) < 0 with 0 < |u| ≤ τ1,

(H
′′
11) F (k, u) > 0 with τ2 ≤ |u| ≤ τ3.

Example 6.1. As example of function satisfying assumptions (H6)− (H8) and (H10)− (H11)

we can give the following, where m ≥ 2 is a fixed even natural number.

F : Z× Rn given by

F (k, t) :=


− sin |t| if |t| ≤ π,

|t− π| if π < |t| < 2π,

π if |t| ≥ 2π.

In this pragraph we will consider the problem (1.1) on Ya.

Remark 6.2. The functional µ is not coercive on Hm, but it is coercive on Ya, for a ∈ Rn.

Indeed, given a sequence (un)n∈N such that un(k) = a for all n ∈ N and all k ∈ Z, we see

that

µ(un) = M̂

(
m∑
k=1

A(k − 1,∆un(k − 1))

)
= M̂

(
m∑
k=1

A(k − 1, 0)

)
= 0.

Letting a −→ +∞, we see that µ is not coercive on Hm. Furthermore, by using (5.3) we get

M̂

(
m∑
k=1

A(k − 1,∆u(k − 1))

)
≥ B1

α(p+)α
ζα‖u‖αp+e .

It is inferred that µ is coercive on Ya.

Let us note that the solutions obtained being in Ya, for a ∈ Rn; there are therefore no

constant solutions, however there may still be a zero solution.

Theorem 6.3. Assume that conditions (H1) − (H11) hold. Then there exists λ > 0 such

that problem (1.1) has at least three solutions in Ya, at least two of which are necessarily

non-zero.

Proof.

Based on previous results, µ is coercive on Ya and is C1, therefore, µ verifies assumptions of
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Theorem 3.3.

According to the hypothesis (H10),

F (k, u(k)) ≤ C =⇒ J(u) ≥ −mC > −∞.

Hence J is bounded from below.

By (H
′′
11) it follows that

−F (k, u(k)) < 0,

for all u ∈ Ya such that τ2 ≤ |u(k)| ≤ τ3 for all k ∈ Z. We thus deduce that there exists a

point u ∈ Ya such that J(u) < 0. Consequently,

inf
u∈Ya

J(u) < 0.

By (H
′
11) and since µ is continuous, coercive, convex, non-negative and µ(0) = 0, we get that

there are s, r > 0, such that J(u) > 0 for r ≤ µ(u) ≤ s. Therefore, (b2) is satisfied.

Now, by (H8) and (H
′′
11) we obtain

J(0) = 0 < inf
r≤µ(u)≤s

J(u).

Hence, condition (b3) is satisfied. Thus, by Theorem 3.3 we see that there exists λ > 0 such

that the functional Jm has at least three critical points on Ya. Since by Lemma 4.3 critical

points of Jm are solutions of problem (1.1), hence the result follows.

For numbers r0, s0 > 0 we put

r
′
:= inf{‖u‖max : µ(u) ≥ r0} and s

′
:= sup{‖u‖max : µ(u) ≤ s0},

where

‖u‖max = max
k∈Z[1,m]

|u(k)|.

Hence,

{u ∈ Ya : µ(u) ≥ r0} ⊂ {u ∈ Ya : ‖u‖max ≥ r
′}

and

{u ∈ Ya : µ(u) ≤ s0} ⊂ {u ∈ Ya : ‖u‖max ≤ s
′}.

Assume that F satisfies the following.

(H12) : There exist constants r0, s0 > 0, r0 < s0 such that the following relations hold

(H
′
12) sup
|u|<s′

F (k0, u) < sup
u∈Rn

F (k, u) for some k0 ∈ Z[1,m];

(H
′′
12)F (k, u) ≤ 0 for all (k, u) ∈ Z[1,m]× Rn with r

′ ≤ |u| ≤ s
′
.
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Example 6.4. As examples of functions satisfying assumptions (H6)− (H8), (H10) and (H12)

we can give the following, where m ≥ 2 is a fixed even natural number.

(1) F : Z× Rn given by

F (k, t) :=


3
5
π|t| if |t| ≤ 5

6
π,

sin |t| if 5
6
π < |t| < 2π,

sin |t|a(k) if |t| ≥ 2π,

where a : Z→ R is defined by

a(k) :=

{
1
2

if k = 2l,

1 if k = 2l + 1; l ∈ Z.

Remark 6.5. Note that (H
′
12) is equivalent to the following hypothesis.

(6.1)
m∑
k=1

sup
|t|≤s′

F (k, t) <
m∑
k=1

sup
t∈R

F (k, t);

in fact from (6.1) it is easy to get (H
′
11), since

(6.2) sup
|t|≤s′

F (k, t) ≤ sup
t∈R

F (k, t) for any s
′
> 0 and for any k ∈ Z[1,m].

On the other hand, since (6.1) is equivalent to the following

(
sup
t∈R

F (1, t)− sup
|t|<s′

F (1, t)
)

+
(

sup
t∈R

F (2, t)− sup
|t|<s′

F (2, t)
)

+...+
(

sup
t∈R

F (m, t)− sup
|t|<s′

F (m, t)
)
>

0, we get (6.1), noting again (6.2). Assumption (6.1) was used in the context of anisotropic

problems in [13].

Theorem 6.6. Let r0, s0 > 0, r0 < s0. Assume that conditions (H1)− (H10) and (H12) hold.

Then, there exists λ > 0 such that problem (1.1) has at least three solutions on Ya, at least

two of which are non-trivial.

Proof.

We will show that Jm verifies assumptions of Theorem 3.3. Clearly, µ is coercive and is

of class C1 on Ya, µ(0) = 0 and J is bounded from below. By (H
′
12), we deduce that

inf
u∈Ya

J(u) = −
m∑
k=1

sup
{i∈Z[1,m]:u(i)∈Rn}

F (k, u(i))

< −
m∑
k=1

sup
{i∈Z[1,m]:u(i)≤s′}

F (k, u(i)) = inf
‖u‖max≤s′

J(u) ≤ inf
µ(u)≤s0

J(u).
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Thus, (b2) is satisfied. For any u ∈ Ya with r0 ≤ µ(u) ≤ s0, we have r
′ ≤ ‖u‖max ≤ s

′
.

By (H”
12), we obtain

inf
r0≤µ(u)≤s0

J(u) ≥ inf
r′≤‖u‖max≤s′

J(u)

= −
m∑
k=1

sup
{i∈Z[1,m]:r′≤maxi∈Z[1,m] |u(i)|≤s′}

F (k, u(i)) ≥ 0 = J(0).

Therefore (b3) is satisfied. Finally, by Theorem 3.3 there exists λ > 0 such that the function-

al Jm has at least three critical points in Ya. Consequently, by Lemma 4.3, problem (1.1)

has at least three solutions. Note that without the hypothesis (H
′
12) it is possible to obtain

a type of small solutions, lying near the origin.

Let us consider the following remark.

Remark 6.7. Let k0 ∈ Z[1,m] be a fixed real. Since F (k0, t) ≤ C for some C > 0, so

sup
t∈Rn

F (k0, t) = β ≤ C.

If β > 0 we can reason as follows. Since t 7−→ F (k0, t) is continuous and since F (k0, 0) = 0,

there exists sufficiently small positive s
′

depending on β such that

−β
2
≤ F (k0, t) ≤

β

2
.

Thus,

sup
|t|≤s′

F (k0, t) < sup
t∈Rn

F (k0, t).

From the above remark we have the following result.

Corollary 6.8. Assume that conditions (H1)− (H10) and (H”
12) hold. Let

sup
t∈Rn

F (k0, t) > 0,

for some k0 ∈ Z[1,m]. Then, there exists λ > 0 such that problem (1.1) has at least three

solutions on Ya, for a ∈ Rn, at least two of which are non-trivial.

We can also replace (H”
12) with (H

′
11) provided that τ1 is sufficiently large. Indeed, we can

reason as follows.

Remark 6.9. Let s0 >
B1ζ

α

α(p+)α
, 0 < r0 < s0 and τ0 = ζ0

[
s0α(p+)α

B1ζα

] 1
αp+

. If (H
′
11) is satisfied

with τ1 ≥ τ0, then (H”
12) is also satisfied with s

′
= τ0. The inequality µ(u) ≤ s0 is equivalent
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to

M̂

(
m∑
k=1

A(k − 1,∆u(k − 1))

)
≤ s0.

Using (5.3) we obtain
B1

α(p+)α
ζα‖u‖αp+e ≤ s0. Consequently, since s0 >

B1ζ
α

α(p+)α
, we get

‖u‖e ≤

[
s0α(p+)α

B1ζα

] 1
αp+

.

Since all norms on Ya, for a ∈ Rn are equivalent, therefore, there exists a constant ζ0 > 0

such that ‖u‖max ≤ ζ0‖u‖e; hence

‖u‖max ≤ ζ0

[
s0α(p+)α

B1ζα

] 1
αp+

and

s
′
= sup{‖u‖max : µ(u) ≤ s0} = ζ0

[
s0α(p+)α

B1ζα

] 1
αp+

.

Furthermore

{u ∈ Ya : µ(u) ≤ s0} ⊂ {u ∈ Ya : |u| ≤ ζ0

[
s0α(p+)α

B1ζα

] 1
αp+

} ⊂ {u ∈ Ya : |u| ≤ τ1}.

Corollary 6.10. Let s0 >
B1ζ

α

α(p+)α
, 0 < r0 < s0 and τ0 = ζ0

[
s0α(p+)α

B1ζα

] 1
αp+

. Assume that

conditions (H1) − (H10) and (H
′
12) hold. If moreover (H

′
11) is satisfied with τ1 ≥ τ0, then

there exists λ > 0 such that problem (1.1) has at least three solutions on Ya, for a ∈ Rn, at

least two of which are non-trivial.

Analogously we obtain the following.

Corollary 6.11. Let s0 ≤
B1ζ

α

α(p+)α
, 0 < r0 < s0 and τ0 = ζ0

[
s0α(p+)α

B1ζα

] 1
αp−

. Assume that

conditions (H1) − (H10) and (H
′
12) hold. If moreover (H

′
11) is satisfied with τ1 ≥ τ0, then

there exists λ > 0 such that problem (1.1) has at least three solutions on Ya, for a ∈ Rn, at

least two of which are non-trivial.
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