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ABSTRACT. Let R be a ring and (S, <) a strictly ordered monoid. The generalized power
series ring [[R%<]] with coefficients in R and exponents in S is a common generalization of
polynomial rings, power series rings, Laurent polynomial rings, group rings, and Malcev-
Neumann Laurent series rings. We initiate the study of the S-quasi-Armendariz condition on
R, a generalization of the standard quasi-Armendariz condition from polynomials to general-
ized power series. The class of quasi-Armendariz rings includes semiprime rings, Armendariz
rings, right (left) p.q.-Baer rings and right (left) PP rings. The S-quasi-Armendariz rings
are closed under direct product. Also it is shown that, if R is a left APP-ring, then R is
S-quasi-Armendariz. The a necessary and sufficient condition is given for rings under which
the ring R is reflexive if and only if [[R%=]] is reflexive ring and r(gs.<yj(f[[R%<]]) is pure
as a right ideal in [[R¥<]] for any element f € [[RS<]]. We conclude some characterizations
for generalized power series ring to be semiprime, quasi-Baer ring.
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1. Preliminaries

All rings considered here are associative with identity. Any concept and notation not
defined here can be found in Ribenboim ([17]—[20]), Elliott and Ribenboim [5]. We will
write monoids multiplicatively unless otherwise indicated. If R is a ring and X is a nonempty
subset of R, then the left (right) annihilator of X in R is denoted by (g(X)(rr(X)).

Let (S, <) be an ordered set. Recall that (5,<) is artinian if every strictly decreasing
sequence of elements of S is finite, and that (S, <) is narrow if every subset of pairwise
order-incomparable elements of S is finite. Thus, (S5, <) is artinian and narrow if and only if

every nonempty subset of S has at least one but only a finite number of minimal elements. Let
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S be a commutative monoid. Unless stated otherwise, the operation of S will be denoted
additively, and the neutral element by 0. The following definition is due to Elliott and
Ribenboim [5].

Let (S, <) is a strictly ordered monoid (that is, (S, <) is an ordered monoid satisfying the
condition that, if s,s',t € S and s < s, then s +t < s +t), and R a ring. Let [[R><]]
be the set of all maps f : S — R such that supp(f) = {s € S|f(s) # 0} is artinian and
narrow. With pointwise addition, [[R%<]] is an abelian additive group. For every s € S and
frg € [[R5=]], let Xo(f,9) = {(w,v) € S x Slu+v=s, f(u) #0,g(v) #0}. It follows from
Ribenboim [20, 4.1] that X(f,g) is finite. This fact allows one to define the operation of
convolution:

(o)) = D flwgv).
(u,v)€Xs(f,9)

Clearly, supp(fg) C supp(f)+ supp(g), thus by Ribenboim [18, 3.4] supp(fg) is artinian and
narrow, hence fg € [[R¥=]]. With this operation, and pointwise addition, [[R®<]] becomes
an associative ring, with identity element e, namely e(0) = 1,e(s) = 0 for every 0 # s € S.
Which is called the ring of generalized power series with coefficients in R and exponents in
S. Many examples and results of rings of generalized power series are given in Ribenboim
([17]—[20]), Elliott and Ribenboim [5] and Varadarajan ([12], [13]). For example, if S =
N U {0} and < is the usual order, then [[RNV{%=]] 2 R[[z]], the usual ring of power series.
If S is a commutative monoid and < is the trivial order, then [[R%=]] = R[S], the monoid
ring of S over R. Further examples are given in Ribenboim [18]. To any r € R and s € S,
we associate the maps ¢, e; € [[R>=]] defined by

T, xz =0, 1, T =s,
0, otherwise, 0, otherwise.

It is clear that 7 — ¢, is a ring embedding of R into [[R%<]], s +— e, is a monoid embedding
of S into the multiplicative monoid of the ring [[R%=]], and c.e, = e,c,. Recall that a monoid
S is torsion-free if the following property holds: If s,t € S, if k is an integer, £ > 1 and
ks = kt, then s = t.

In this paper we give a new concept of S-quasi-Armendariz ring, which are a common
generalization of quasi-Armendariz rings and S-Armendariz rings. We prove that, if R is a
left APP-ring, then R is S-quasi-Armendariz. Moreover, a ring R is reflexive ring if and
only if [[R%=]] is reflexive ring and (1) rg(a)R) is pure as a right ideal in R for any element
a € R; (2) ryps.<y (f[[R7=]]) is pure as a right ideal in [[R5=]] for any element f € [[R*=]] in
that case R is S-quasi-Armendariz ring, where (5, <) be a strictly ordered monoid. Also as a

Corollary, a ring R is a quasi-Baer ring if and only if [[R%<]] is quasi-Baer ring and we give a
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lattice structure to the right (left) annihilators of a ring and characterize S-quasi-Armendariz
rings as those rings R for which an analogue of the Hirano map is a lattice isomorphism from
the right (left) annihilators of R to the right (left) annihilators of [[R%=]].

2. Generalization of quasi-Armendariz rings

We start by the following definition:

Definition 2.1. Let S be a torsion-free and cancellative monoid, < a strict order on S. We
say a ring R, S-quasi-Armendariz, if whenever f,g € [[R%=]] satisfy f][[R%=]lg = 0, then
f(u)Rg(v) =0 for each u,v € S.

The following result appeared in [24, Lemma 2.1].

Lemma 2.2. Let S be a torsion-free and cancellative monoid, < a strict order on S. Then
[[R*=]] is reduced if and only if R is reduced.

Reduced rings are semicommutative. From Proposition 2.4 reduced rings are S-quasi-
Armendariz for any torsion free and cancellative monoid S. In [23, Corollary 2.3] it was
claimed that all semicommutative rings are McCoy. However, Hirano's claim that, if R is
semicommutative then R[z] is semicommutative, but this was later shown to be false in [2,
Example 2]. Moreover, Nielsen [15] gave an example to show that a semicommutative ring
R need not be right McCoy, we also prove that the polynomial ring R[x] over it actually
is not semicommutative. By Liu [24], A ring R is called S-Armendariz ring, if for each
f,g € [[R¥=]] such that fg = 0 implies that f(u)g(v) = 0 for each u,v € S and it was shown
that generalized power series rings over semicommutative rings are semicommutative. Here

we have the following.

Lemma 2.3. [24, Proposition 2.7] Let (S, <) be a strictly ordered monoid and R be an

S-Armendariz ring. Then R is semicommutative if and only if [[RS=<]] is semicommutative.

Proposition 2.4. Let S be a torsion-free and cancellative monoid, < a strict order on S

and R a reduced ring. Then R is an S-quasi-Armendariz.

Proof. Let 0 # f, g € [[R*=]] be such that f[[R®<]]g = 0. By Ribenboim [18], there exists a
compatible strict total order <" on S, which is finer than < . We will use transfinite induction
on the strictly totally ordered set (S, <) to show that f(u)Rg(v) = 0 for any u € supp(f)
and v € supp(g). Let s and ¢ denote the minimum elements of supp( f) and supp(g) in the <’
order, respectively. If u € supp(f) and v € supp(g) are such that u +v = s+ ¢, then s <" u
and t <" v. If s < u then s+t <" u+v = s+ t, a contradiction. Thus u = s. Similarly,

v=t. Hence for any r € R,0 = (fe,g)(s +1) = X (uiyexoii(fong | (@rg(v) = f(s)rg(t).
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Now suppose that w € S is such that for any u € supp(f) and v € supp(g) with u 4+ v <’
w, f(u)Rg(v) = 0. We will show that f(u)Rg(v) = 0 for any u € supp(f) and v € supp(g)
with v + v = w. We write X,,(f,g9) = {(u,v) | v +v = w,u € supp(f),v € supp(g)} as
{(us,v;) | i =1,2,...,n} such that

/ / /
up < uy < - <y,

Since S is cancellative, u; = uy and u; +v; = ug + v9 = w imply v; = v,. Since <’ is a strict
Y

order, u; <" us and u; + v; = us + vo = w imply vy <’ v;. Thus we have
vy, < oo <oy < g

Now, for any r € R,

n

0=(eg)w) = 3 frg) = 3 furg(w). (1)

(u,0)EXw(f,crg) i=1

For any i > 2,u; + v; < w; + v; = w, and thus, by induction hypothesis, we have
f(u1)Rg(v;) = 0. Since R is reduced, by Lemma 2.2 this implies g(v;) Rf(u;) = 0. Hence,
multiplying (1) on the right by f(u1)g(v1), we obtain

(32 Flwdrg(v)) ftun)g(or) = Flun)g(orf (u)g(v:) = 0.

Then (f(u1)rg(vi))* = 0. Since R is reduced, we have f(u;)rg(vi) = 0. Now (1) becomes

Z f(ui)rg(vi) = 0. (2)

Multiplying f(u2)g(ve) on (2) from the right-hand side, we obtain f(us)rg(vs) = 0 by the
same way as the above. Continuing this process, we can prove f(u;)rg(v;) = 0 for any r € R,
fori=1,2,...,n. Thus f(u)Rg(v) = 0 for any u € supp(f) and v € supp(g) with u+v = w.
Therefore, by transfinite induction, f(u)Rg(v) = 0 for any u € supp(f) and v € supp(g). O

Corollary 2.5. [24, Lemma 3.1] Let S be a torsion-free and cancellative monoid, < a strict

order on S, and R a reduced ring. Then R is S-Armendariz.

Proposition 2.6. Let S be a torsion-free and cancellative monoid, < a strict order on S.
If R is reduced semicommutative ring, then R is S-Armendariz if and only if R is S-quasi-

Armendariz.
Proof. Apply Lemma 2.3 and Proposition 2.4. O

Proposition 2.7. Let (S, <) be a strictly ordered monoid. Then every S-Armendariz rings

are S-quasi-Armendariz.
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An ideal I of R is said to be right s-unital if, for each a € I there exists an element e € [
such that ae = a. Note that if [ and J are right s-unital ideals, then sois INJ (if a € INJ,
then a € alJ C a(INJ)).

The following result follows from Tominaga [11, Theorem 1].

Lemma 2.8. Anideal I of a ring R is left (resp. right) s-unital if and only if for any finitely
many elements ay,aq,...,a, € I, there exists an element e € I such that a; = ea;(resp.

a; = a;e) for each i =1,2,... n.

Clark defined quasi-Baer rings in [22]. A ring R is called quasi-Baer if the left annihilator
of every left ideal of R is generated by an idempotent. Note that this definition is left-right
symmetric. Some results of a quasi-Baer ring can be found in [16] and [22] and used them to
characterize when a finite dimensional algebra with unity over an algebraically closed field
is isomorphic to a twisted matrix units semigroup algebra. As a generalization of quasi-Baer
rings, Birkenmeier, Kim and Park in [10] introduced the concept of principally quasi-Baer
rings. A ring R is called left principally quasi-Baer (or simply left p.¢.-Baer) if the left
annihilator of a principal left ideal of R is generated by an idempotent. Similarly, right
p.q.-Baer rings can be defined. A ring is called p.q.-Baer if it is both right and left p.q.-
Baer. Observe that biregular rings and quasi-Baer rings are p.q.-Baer. For more details and
examples of left p.q.-Baer rings, see ([7]-[10]) and [27]. A ring R is called a right (resp.,
left) PP-ring if every principal right (resp., left) ideal is projective (equivalently, if the right
(resp., left) annihilator of an element of R is generated (as a right (resp., left) ideal) by
an idempotent of R). A ring R is called a PP-ring (also called a Rickart ring [3, p. 18])
if it is both right and left PP. We say a ring R is a left APP-ring if the left annihilator
[gr(Ra) is right s-unital as an ideal of R for any element a € R. This concept is a common

generalization of left p.q.-Baer rings and right P P-rings

Proposition 2.9. Let (S, <) a strictly totally ordered monoid. If R is left APP-ring, then

R is S-quasi-Armendariz.

Proof. Let 0 # f, g € [[R¥=]] be such that f[[R5=]]g = 0. We use the transfinite induction
to show that f(u)Rg(v) = 0 for all u,v € S. Assume that 7(f) = wug,7(g9) = vo. Let
(u,v) € Xugavo(f,9)- Soug < wand vg < v. If ug < u, then ug+vy < u+tvy < u+v = ug+y,
a contradiction. Thus u = ug. Similarly, v = vy. S0 Xyt (f,9) = {(uo,v0)}. Hence for any
r € R, from f[[R5=]]g = 0 we have,

0= (ferg)(uo + vo) = > fu)rg(v) = f(uo)rg(vo).

(u,0)€EXug+ug (frerg)
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So f(ug)Rg(vg) = 0. Now, let A € S with ug+v9 < A and assume that for any u € supp(f)
and any v € supp(g), if u+v < A, then f(u)Rg(v) = 0. We claim that f(u)Rg(v) = 0,
for each u € supp(f) and each v € supp(g) with u +v = A. For convenience, we write
Xo(f,9) = {(u,v) |u+v = Xu e supp(f),v € supp(g)} as {(us,v;) | i =1,2,...,n} such
that

U < Uy < v < Uy,
where n is a positive integer (Note that if u; = wug, then from u; + v; = uy + vo we have

v; = vy, and then (uy,v1) = (ug,v7)). Since f[[R¥=]]g = 0, for any r € R we have:

0= (fag)N) = > flurgw)=>_ flu)rg(). (3)
(uv)EXA(frerg) i=1
Let ey, € rr(f(u1)R). So f(u1)Re,, = 0 and which implies f(u;)Re,, g(v1) = 0. Let 7’ € R

be an arbitrary element. Then we have f(u;)r'e,, g(v1) = 0. Take r = 1’e,, in Eq. (3). Thus,
> fu)r'eng(vi) =0,
=2

Note that uy +v; < u; +v; = X for any ¢ > 2. So by compatibility and induction hypothesis,
f(u1)Rg(v;) = 0 for each ¢ > 2. Since R is right APP, rr(f(u1)R) is left s-unital. So without
lose of generality and using Lemma 2.8, we can assume that g(v;) = e,, g(v;), for each i > 2.

Therefore .
> Fun'glu) = o (@)

Let ey, € rr(f(u2)R). So f(ug)Re,, = 0 and then f(us)Re,,g(v2) = 0. This implies
f(u2)Rey,g(ve) = 0.

Let p € R be an arbitrary element. So f(us)pey,g(ve) = 0. Also note that us+v; < u;+v; =
A for any ¢ > 3. So by induction hypothesis, f(uz)Rg(v;) = 0. Therefore g(v;) € rr(f(u2)R),
for each ¢ > 3. Since rg(f(ug)R) is left s-unital, without lose of generality and using Lemma

2.8, again we can assume that g(v;) = ey, g(v;), for each ¢ > 3. Take r' = pe,, in Eq. (4), so

we have: .
Z fui)pew,g(vi) = 0. (5)
i=2
Continuing in this manner, we have f(u,)qg(v,) = 0, where ¢ is an arbitrary element of R.
Thus f(un)Rg(Un) = 0. Hence f(un 1)Rg(vn ) (UJ?)RQ(UQ) = 07f(u1)Rg<U1) =

0. Therefore, by transfinite induction, f(u)Rg(v) = 0 for any w,v € S, and the proof is
complete. 0

Corollary 2.10. Let (S, <) a strictly totally ordered monoid. If I is a finitely generated left
ideal of R then for all a € Ig(I),a € alg(I). So R is S-quasi-Armendariz.
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Proof. By Proposition 2.9 and [26, Proposition 2.6]. O

Proposition 2.11. Let S be a torsion-free and cancellative monoid, < a strict order on S
and R an S-quasi-Armendariz ring. If fi, ..., fn € [[R¥S]] & A are such that fiAfoA--- Af, =
0, then fi(u1)Rfo(ug)R- -+ Rfp(uy,) =0 for all uy,us, ..., u, € 8.

Proof. Assume that fiAfsA---Af, = 0. Then for any ¢2,93,...,9,-1 € A,
fih(faga -+ Gn1fn) = 0.
Since R is S-quasi-Armendariz, we have

Silu)R((f292 - gn-1fn)(v)) = 0

for any uy,v € S. Thus
(Chiuyr (f292 - gn-1fn))(v) =0

for any € R and any v € S. So Cf,(uy)r, f292 - = - gn—1fn = 0, therefore Cy, (), foA -
Af, =0, for any r; € R. Thus

(Chiuym f)A(f395 " gn-1.fn) = 0.
By the hypothesis, we have
(Ctyuryr f2) (u2) R(f393 - gn1fn)(2) = 0
for any uy, z € S. Yields
Ji(ur)ry fo(ug) R(f3g5 - -+ gn-1.fn)(2) = 0.
So fi(uy)ryfo(ug)re(fsgs -« gno1fn)(z) =0, for any 1,79, € R. Thus
(Chriuyr fa(ua)raf393 *** gn-1fn)(2) = 0,

for any ry,rp,€ R and any 2 € S. S0 Cf, (u)r fa(ua)rs f393 * - Gn—1fn = 0 for any gs, ..., gn—1 €
A. Thus,

Cfl(m)mfz(uz)rngA' c Afn = 0.

Since R is S-quasi-Armendariz. Repeating this process, we can get

Cty(uryra fa(uz)ra-rn1 fu(un) = 0

So fi(ur)ryfo(ug)ra - rp_q fu(u,) = 0 for any uy, ug, ..., u, € S and any rq,79, ...,
rn—1 € R. Therefore fi(uy)Rfa(uzs)R- - Rf,(uy,) = 0 for any uy, ug, ..., u, € S. O

The following is a generalization of Proposition 2.4.
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Corollary 2.12. Let S be a torsion-free and cancellative monoid, < a strict order on S
and R a reduced ring. If fi,..., f. € [[R®S]] & A are such that fyAfoA---Af, = 0, then
fiur)Rfa(ug)R ... Rfn(uy,) =0 for all uy,ug, ..., u, € S.

Proposition 2.13. Let S be a torsion-free and cancellative monoid, < a strict order on S,
and R a reduced ring. Then fRg = 0 if and only if f[[R><]]g = 0.

Proof. (=) Assume that 0 # f, g € [[R%=]] are such that fRg = 0. By Corollary 2.5, R is
S-Armendariz, so for any h € [[R%=]] and any s € S,
(fhg)(s)= D flwh(w)g(v)=0.
(u,w,w)eXs(f,h,9)

Thus fhg = 0. This show that f[[R%=]]g = 0. The “only if part” is clear. O

According to [6], a right ideal [ is reflexive if Ry € [ implies yRx € I for z,y € R. Hence
we shall call a ring R a reflexive ring if 0 is a reflexive ideal (i.e., aRb = 0 implies bRa = 0
for a,b € R). Moreover, a right ideal I is called completely reflexive if xy € I implies yx € 1.
A ring R is completely reflexive if (0) has the corresponding property. It is clear that every

completely reflexive ring is reflexive.

Proposition 2.14. Let (S, <) be a strictly totally ordered monoid and R be an S-quasi-

Armendariz ring. Then R is reflevive ring if and only if [[R%=]] is reflevive ring.

Proof. (=) Let R be reflexive ring. Suppose that f, g € [[R¥=]] are such that f[[R><]]g = 0.
Since R is S-quasi-Armendariz, we have f(u)Rg(v) = 0 for any u € supp(f) and v € supp(g).
But R is reflexive, so g(v)Rf(u) = 0 for all u,v € S. Now for any h € [[R%=]] and any s € S,
(Ghf)(s) = > g)h(w)f(u)=0.
(v,w,u)€Xs(g:h,f)
Thus ghf = 0. This show that g[[R%=]]f = 0. This means that [[R%=]] is reflexive. (<) Let
a,b € R be such that aRb = 0. Then C,[[R*=]]Cy, = 0. Hence C,[[R%=]]C, = 0 by reflexive.
So bRa = 0. Therefore R is reflexive. 0

Corollary 2.15. Let (S, <) be a strictly totally ordered monoid and R a reduced ring. Then
R is reflezive ring if and only if [[R%=]] is reflezive.

Due to Hirano [23]. A ring R is called quasi-Armendariz provided that a;Rb; = 0 for all
i,7 whenever f(x) = ag + a1z + -+ + a,a™, g(x) = by + bz + - -+ + bp,x™ € R|x] satisfy
f(x)R[z]g(x) = 0.

Corollary 2.16. [14, Proposition 3.2] Let R be a quasi-Armendariz ring, then the following

statements are equivalent:
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(1) R is reflexive.
(2) Rlx] is reflexive.
(3) Rlx;x7Y] is reflexive.

A ring R is called semiprime if for any a € R, aRa = 0, implies a = 0. Let R be a ring and
(S, <) a strictly totally ordered monoid. A ring R is called S-semiprime if f[[R%=]]f = 0,
then f = 0 for each f € [[R5=]].

The following result appeared in [25, Lemma 2.7]

Lemma 2.17. Let R be a ring and (S, <) a strictly totally ordered monoid. Then R is a

semiprime ring if and only if [[R%=]] is a semiprime ring.

Proposition 2.18. Let (S, <) be a strictly totally ordered monoid. If R is a semiprime,

then R is S-quasi-Armendariz.
Proof. 1t follows from Proposition 2.9. U

Corollary 2.19. If S be a commutative, torsion-free, and cancellative monoid, then every

semiprime ring R is S-quasi-Armendariz.
Corollary 2.20. [23, Corollary 3.8] A semiprime ring is a quasi-Armendariz ring.

Corollary 2.21. Let R be a ring and (S,<) a strictly totally ordered monoid. If R is

semiprime, then [[R%=]] is S-quasi-Armendariz ring.

Corollary 2.22. Let R be a ring and (S, <) a strictly totally ordered monoid. Assume that

R is semiprime. Then R is reflevive ring if and only if [[R%=]] is reflexive.

Theorem 2.23. Let S be a torsion-free and cancellative monoid, < a strict order on S.
Then the following conditions are equivalent:
(1) R is semiprime;

(2) R is reduced S-quasi-Armendariz.

Proof. (1) = (2) Is trivial.

(2) = (1) Let R be a reduced S-quasi-Armendariz. In particular for any 0 # f € [[R5=]]
be such that f[[R%<]]f = 0, then f(u)Rf(u) = 0. Thus, (Rf(u))? = 0 since R is reduced.
Therefore f(u) = 0. O

Let I be an index set and R; be a ring for each i € I. Let (S5,<) be a strictly or-
dered monoid, if there is an injective homomorphism f : R — [[..; R; such that, for each
j € I,mjf : R — R; is a surjective homomorphism, where 7; : [[..; Ri — R; is the jth

projection. We have the following.
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Proposition 2.24. Let R; be a ring, (S, <) a strictly totally ordered monoid, for each i in
a finite index set I. If R; is S-quasi-Armendariz for each i, then R = [],.; R; is S-quasi-

Armendariz.

Proof. Let R = [] R; be the direct product of rings (R;);cr and R; is S-quasi-Armendariz
i€l
for each i € I. Denote the projection R — R; as II;. Suppose that f,g € [[R%=]] are such
that f[[R5=]]g = 0. Set f; = [I, f, 9 = [1; 9 and h; = [[, h. Then f;, g; € [[ng]] For any
u,v € S, assume f(u) = (a%)ier, g(v) = (b?)icr. Now, for any h € [[R¥<]], any r € R and
any s € S,
(ferg)(s) = > f(wrg(v)
(u,v)EXs(f,crg)
- > (ai)ier(r:)ier (b7 )ier
(uw)eXs(f,crg)
= > ((@)rd)))ier
(uw)eXs(f.erg)
= > (filw)rigi(v))ier
(uvv)EXs(fyc'rg)
= ( ) fi(u)rigi(v)>
(u,’U)EXs(fi,Crigi)

= ((fihigi)(s))ier

il

Since (fc.g)(s) =0 we have
(fzcngl)(s> =0.
Thus, f;h;g; = 0. Now it follows f;(u)r;g;(v) = 0 for any r € R, any u,v € S and any i € I,
since R; is S-quasi-Armendariz. Hence, for any u,v € S,
fw)rg(v) = (fi(u)(ri)gi(v))ier = 0

since [ is finite. Thus, f(u)Rg(v) = 0. This means that R is S-quasi-Armendariz. O

3. Characterizations generalized power series quasi-Armendariz rings via

annihilators

In this section we give a lattice structure to the right (left) annihilators of a ring and
characterize S-quasi-Armendariz rings as those rings R for which an analogue of the Hirano
[23] map is a lattice isomorphism from the right (left) annihilators of R to the right (left)
annihilators of [[R=]].

Let v = C(f) be the content of f, i.e., C(f) = {f(u)|lu € supp(f)} C R. Since, R ~ cg

we can identify, the content of f with
o) = {Cf(ui)|ui € supp(f)} C HRS’SH-
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Lemma 3.1. [21, Lemma 2.1] Let R be a ring, S a strictly ordered monoid, [[R*<]] the

generalized power series ring and U C R. Then

[RS<)r(U) = s (U), (ra(@)IR]) = ras.y(0))

By Lemma 3.1 we have two maps ¢ : rAnng(id(R)) — rAnnggs.<;(id([[R*=]])) and 4 :
IAnng(id(R)) — lAnnggs.<; (id([[R5=]])) defined by ¢(I) = I[[R5=]] and ¢(J) = [[R*=]]J
for every I € rAnng(id(R)) = {rr(U)|U is an ideal of R} and J € [Anng(id(R)) = {lg(U)|U
is an ideal of R}, respectively. Obviously, ¢ is injective. In the following Theorem we show
that ¢ and v are bijective maps if and only if R is S-quasi-Armendariz. This Theorem is a
generalization of a result of Hashemi ([4, Proposition 2.1]) that generalizes a result of Hirano
([23, Proposition 3.4]).

Theorem 3.2. Let R be a ring, S a strictly ordered monoid and [[R%<]] the generalized
power series. Then the following are equivalent:

(1) R is generalized power series quasi-Armendariz ring.

(2) The function ¢ : rAnng(id(R)) — rAnn[[Rs,g]](id([[RS’S]])) is bijective, where ¢(I) =
I[[R>=]].

(3) The function v : lAnng(id(R)) — lAnnggs.<;(id([[R*=]])) is bijective, where ¢(J) =
[R*=]]J.

Proof. (1)=(2) Let Y C [[R®<]] and v = UseyC(f). From Lemma 3.1 it is sufficient
to show that rygs.<(f) = rrC(f)[[R*=]] for all f € Y. In fact, let g € rygs<(f) and
for any h € [[R®<]]. Then fhg = 0 and by assumption f(u;)tg(v;) = 0 for each u; €
supp(f),t € R and each v; € supp(g). Then for a fixed u; € supp(f),t € R and each v; €
supp(g),0 = f(u;)tg(vj) = (cpceg)(v;) and it follows that g € rRUy,esupp(r)Crun ct [RY=S]] =
rrC(N[[R>=]]. So ryps<(f) € rrC(f)[[R¥=]].

Conversely, let g € rgC(f)[[R*=]], then ¢y, cig = 0 for each w; € supp(f),t € R. Hence,
0 = (crunceg)(vy) = f(us)tg(v;) for each w; € supp(f),t € R and v; € supp(g). Thus,

(fho)(s) = > flutg(v;) =0
(ui,vi)EXs(fretg)

and it follows that g € rygs.<j(f). Hence rrC(f)[[R*=]] C rps.<j(f) and it follows that
rrC(NIR¥=]] = rrs.<y(f)- So

rips<y(Y) = Nyevrgps<y(f) = Nyey rrC(HIRS]) = rr()[[R*])

(2)=(1) Suppose that f,g € [[R®=]] be such that f[[R%=]]g = 0. Then g € rygs.<j(f) and
by assumption rygs.<)(f) = v[[R%=]] for some right ideal v of R. Consequently, 0 = Jeicy(w))
and for any u; € supp(f),0 = (feicyw,))(wi) = f(wi)tg(v;) for each u; € supp(f),t € R and
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vj € supp(g). Hence, R is a generalized power series quasi-Armendariz ring. The proof of
(1)< (3) is similar to the proof of (1)<(2). O

Definition 3.3. A submodule N of a left R-module M is called a pure submodule if Lg N —
L®pg M is a monomorphism for every right R-module L. By [1, Proposition 11.3.13], for an
tdeal I , the following conditions are equivalent:

(1) I is right s-unital;

(2) R/I is flat as a left R-module;

(3) I is pure as a left ideal of R.

Theorem 3.4. Let R be a ring, (S, <) a strictly totally ordered monoid. Then the following
statements are equivalent:

(1) rr(a)R) is pure as a right ideal in R for any element a € R;

(2) rrs.<y(fI[R¥=]]) is pure as a right ideal in [[R*=]] for any element f € [[R*=]].

In this case R is an S-quasi-Armendariz ring.

Proof. Assume that the condition (1) holds. Firstly, by using the same method of the proof
of Proposition 2.9 we can proved that R is an S-quasi-Armendariz. Finally, by using Lemma
2.8 we can see that the condition (2) holds.

Conversely, suppose that the condition (2) holds. Let a be an element of R. Then
rrs.<)(a[[R%=]]) is left s-unital. Hence, for any b € rg(aR), there exists an element
f € [[R>=]] such that bf = b. Let f(0) be the constant term of f. Then f(0) € rg(aR)
and f(0)b = b. This implies that rg(aR) is left s-unital. Therefore condition (1) holds. O

Let R be a quasi-Baer ring and let a € R. Then [g(Ra) = Re for some idempotent e € R,
and so R/lg(Ra) = R(1—e) is projective. Therefore a quasi-Baer ring satisfies the hypothesis

of Theorem 3.4. Hence we have the following:

Corollary 3.5. Let R be a ring, (S, <) a strictly totally ordered monoid. Then a ring R is

a quasi-Baer ring if and only if [[R>=]] is quasi-Baer ring.
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