Luminescence and structural properties of Ca1-xZrO3:Eux: An experimental and theoretical approach

Main Article Content

Marcelo Assis
Marisa Carvalho de Oliveira
Amanda Fernandes Gouveia
Lara Kelly Ribeiro
Ieda Lucia Viana Rosa
Renan Augusto Pontes Ribeiro
Juan Andrés
Elson Longo

Abstract

The influence of Eu3+ cations in the host matrix of CaZrO3 was investigated by analyzing its luminescence and structural properties. The Ca1-xZrO3:Eux crystals (x = 0.01, 0.02, 0.04, and 0.08 mol%) were obtained by a simple sol-gel method followed by a soft thermal treatment without any surfactant. The structural characterization was performed at short-, medium- and long-distance to verify the effect of the dopant in the host matrix. To endorse the experimental results, first-principles calculations were performed by using the CRYSTAL program associated with the density functional theory. The luminescence profile of the sample was investigated by analyzing the excitation and emission spectrum monitoring the emission at 614 nm and excited at 394 nm, noting that the sample Eu-doped with 0.08 mol% has greater emission intensity. The color variations of the characteristic emissions of Ca1-xZrO3:Eux crystals were evaluated according to the Commission Internationale de L’Éclairage, observing a red shift for all Eu-doped samples. A general luminescence scheme was proposed combining the density of state and the band structure calculations.

Metrics

Metrics Loading ...

Article Details

How to Cite
Assis, M., Oliveira, M. C. de, Gouveia, A. F., Ribeiro, L. K., Rosa, I. L. V., Ribeiro, R. A. P., Andrés, J., & Longo, E. (2022). Luminescence and structural properties of Ca1-xZrO3:Eux: An experimental and theoretical approach. Eclética Química, 47(1SI), 90–104. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p90-104
Section
Original articles

Funding data

References

Al Boukhari, J.; Khalaf, A.; Hassan, R. S.; Awad, R. Structural, optical and magnetic properties of pure and rare earth-doped NiO nanoparticles. Appl. Phys. A 2020, 126, 323. https://doi.org/10.1007/s00339-020-03508-3

Almeida, P. B.; Pinatti, I. M.; de Oliveira, R. C.; Teixeira, M. M.; Santos, C. C.; Machado, T. R.; Longo, E.; Rosa, I. L. V. Structural, morphological and photoluminescence properties of β-Ag2MoO4 doped with Eu3+. Chem. Pap. 2021, 75, 1869–1882. https://doi/10.1007/s11696-020-01489-4

Almeida, T. H.; Almeida, D. H.; Gonçalves, D.; Lahr, F. A. R. Color variations in CIELAB coordinates for softwoods and hardwoods under the influence of artificial and natural weathering. J. Build. Eng. 2021, 35 (3), 101965. https://doi.org/10.1016/j.jobe.2020.101965

André, R. S.; Zanetti, S. M.; Varela, J. A.; Longo, E. Synthesis by a chemical method and characterization of CaZrO3 powders: Potential application as humidity sensors. Ceram. Int. 2014, 40 (10) (Part B), 16627–16634. https://doi.org/10.1016/j.ceramint.2014.08.023

Bai, J.-M.; Zhang, L.; Liang, R.-P.; Qiu, J.-D. Graphene Quantum Dots Combined with Europium Ions as Photoluminescent Probes for Phosphate Sensing. Chem. – A Eur. J. 2013, 19 (12), 3822–3826. https://doi.org/10.1002/chem.201204295

Baig, N.; Kadam, A. R.; Dubey, K.; Dhoble, N. S.; Dhoble, S. J. Wet chemically synthesized Na3Ca2(SO4)3Cl:RE3+ (RE= Ce, Dy, Eu) phosphors for solid-state lighting. Radiat. Eff. Defects Solids 2021, 176 (5–6), 493–507. https://doi.org/10.1080/10420150.2021.1871735

Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913

Bharathi, N. V.; Jeyakumaran, T.; Ramaswamy, S.; Jayabalakrishnan, S. S. Synthesis and characterization of a Eu3+-activated Ba2–xV2O7:xEu3+ phosphor using a hydrothermal method: a potential material for near-UV-WLED applications. Luminescence 2021, 36 (4), 849–859. https://doi.org/10.1002/bio.4031

Chen, W.; Malm, J.-O.; Zwiller, V.; Huang, Y.; Liu, S.; Wallenberg, R.; Bovin, J.-O.; Samuelson, L. Energy structure and fluorescence of Eu2+ in ZnS:Eu nanoparticles. Phys. Rev. B 2000, 61, 11021. https://doi.org/10.1103/PhysRevB.61.11021

Chu, H.; Yao, D.; Chen, J.; Yu, M.; Su, L. Double-Emission Ratiometric Fluorescent Sensors Composed of Rare-Earth-Doped ZnS Quantum Dots for Hg2+ Detection. ACS Omega 2020, 5 (16), 9558–9565. https://doi.org/10.1021/acsomega.0c00861

Cyriac, J.; Mathew, S.; Augustine, S.; Nambissan, P. M. G. Defects characterization studies of europium-substituted bismuth ferrite nanocrystals by positron annihilation and other methods. J. Phys. D. Appl. Phys. 2018, 51 (43), 435303. https://doi.org/10.1088/1361-6463/aadfa7

D’Achille, A. E.; Wallace, R. M.; Coffer, J. L. Morphology-dependent fluorescence of europium-doped cerium oxide nanomaterials. Nanoscale Adv. 2021, 3 (12), 3563–3572. https://doi.org/10.1039/D1NA00096A

De La Pierre, M.; Carteret, C.; Maschio, L.; André, E.; Orlando, R.; Dovesi, R. The Raman spectrum of CaCO3 polymorphs calcite and aragonite: A combined experimental and computational study. J. Chem. Phys. 2014, 140 (16), 164509. https://doi.org/10.1063/1.4871900

Dorenbos, P. Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys Condens. Matter 2003, 15 (49), 8417. https://doi.org/10.1088/0953-8984/15/49/018

Dovesi, R.; Erba, A.; Orlando, R.; Zicovich-Wilson, C. M.; Civalleri, B.; Maschio, L.; Rérat, M.; Casassa, S.; Baima, J.; Salustro, S.; Kirtman, B. Quantum-mechanical condensed matter simulations with CRYSTAL. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8 (4), e1360. https://doi.org/10.1002/wcms.1360

Du, Q.; Zhou, G.; Zhou, J.; Zhou, H. Combustion synthesis and photoluminescence properties of CaZrO3:Eu3+ with highly enhanced brightness by Li+ doping. J. Lumin. 2013, 137, 83–87. https://doi.org/10.1016/j.jlumin.2012.12.046

Dubey, V.; Tiwari, N. Structural and optical analysis on europium doped AZrO3 (A=Ba, Ca, Sr) phosphor for display devices application. AIP Conf. Proc. 2016, 1728, 020002. https://doi.org/10.1063/1.4946052

Eglitis, R. I.; Purans, J.; Gabrusenoks, J.; Popov, A. I.; Jia, R. Comparative Ab Initio Calculations of ReO3, SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) Surfaces. Crystals 2020, 10 (9), 745. https://doi.org/10.3390/cryst10090745

El-Bahy, Z. M.; Ismail, A. A.; Mohamed, R. M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue). J. Hazard. Mater. 2009, 166 (1), 138–143. https://doi.org/10.1016/j.jhazmat.2008.11.022

Evangeline, B.; Azeem, P. A.; Prasada Rao, R.; Swati, G.; Haranath, D. Structural and luminescent features of cerium doped CaZrO3 blue nanophosphors. J. Alloys Compd. 2017, 705, 618–623 https://doi.org/10.1016/j.jallcom.2016.11.115

Fernandes, S. L.; Gasparotto, G.; Teixeira, G. F.; Cebim, M. A.; Longo, E.; Zaghete, M. A. Lithium lanthanum titanate perovskite ionic conductor: Influence of europium doping on structural and optical properties. Ceram. Int. 2018, 44 (17), 21578–21584. https://doi.org/10.1016/j.ceramint.2018.08.221

Fukushima, H.; Nakauchi, D.; Kato, T.; Kawaguchi, N.; Yanagida, T. Scintillation and luminescence properties of undoped and europium-doped CaZrO3 crystals. J. Lumin. 2020, 223, 117231. https://doi.org/10.1016/j.jlumin.2020.117231

Gnanam, S.; Gajendiran, J.; Ramya, J. R.; Ramachandran, K.; Raj, S. G. Glycine-assisted hydrothermal synthesis of pure and europium doped CeO2 nanoparticles and their structural, optical, photoluminescence, photocatalytic and antibacterial properties. Chem. Phys. Lett. 2021, 763, 138217. https://doi.org/10.1016/j.cplett.2020.138217

Gupta, S. K.; Ghosh, P. S.; Sudarshan, K.; Gupta, R.; Pujari, P. K.; Kadam, R. M. Multifunctional pure and Eu3+ doped β-Ag2MoO4: photoluminescence, energy transfer dynamics and defect induced properties. Dalton Trans. 2015a, 44 (44), 19097–19110. https://doi.org/10.1039/C5DT03113C

Gupta, S. K.; Ghosh, P. S.; Pathak, N.; Tewari, R. Nature of defects in blue light emitting CaZrO3: Spectroscopic and theoretical study. RSC Adv. 2015b, 5 (70), 56526–56533. https://doi.org/10.1039/C5RA09637E

He, C.; Ji, H.; Huang, Z.; Zhang, X.; Liu, H.; Liu, S.; Liu, Y.; Fang, M.; Wu, X.; Min, X. Preparation and photoluminescence properties of red-emitting phosphor ZnAl2O4:Eu3+ with an intense 5D0 → 7F0 transition. Mater. Res. Express 2018, 5 (2), 025501. https://doi.org/10.1088/2053-1591/aaa7c9

Holzapfel, N. P.; Majher, J. D.; Strom, T. A.; Moore, C. E.; Woodward, P. M. Cs4Cd1–xMnxBi2Cl12—A Vacancy-Ordered Halide Perovskite Phosphor with High-Efficiency Orange-Red Emission. Chem. Mater. 2020, 32 (8), 3510–3516. https://doi.org/10.1021/acs.chemmater.0c00454

Hou, J.; Yin, X.; Fang, Y.; Huang, F.; Jiang, W. Novel red-emitting perovskite-type phosphor CaLa1−xMgM′O6: xEu3+ (M′=Nb, Ta) for white LED application. Opt. Mater. 2012, 34 (8), 1394–1397. https://doi.org/10.1016/j.optmat.2012.02.031

İlhan, M.; Keskin, İ. Ç. Photoluminescence, radioluminescence and thermoluminescence properties of Eu3+ doped cadmium tantalate phosphor. Dalton Trans. 2018, 47 (39), 13939–13948. https://doi.org/10.1039/C8DT02395F

Jayachandraiah, C.; Kumar, K. S.; Krishnaiah, G.; Rao, N. M. Influence of Dy dopant on structural and photoluminescence of Dy-doped ZnO nanoparticles. J. Alloys Compd. 2015, 623, 248–254. https://doi.org/10.1016/j.jallcom.2014.10.067

Kalu, O.; Ahemen, I.; Esparza Ponce, H. E.; Moller, J. A. D.; Reyes-Rojas, A. Red-emission analysis, Judd–Ofelt intensity parameters and laser properties of CdMgZnO:xEu3+ nanocrystals: the effects of Eu3+ concentration. J. Phys. D. Appl. Phys. 2021, 54, 345108. https://doi.org/10.1088/1361-6463/ac021c

Katyayan, S.; Agrawal, S. Synthesis and Investigation of Structural and Optical Properties of Eu3+ Doped CaZrO3 Phosphor. Mater. Today Proc. 2017, 4 (8), 8016–8024. https://doi.org/10.1016/j.matpr.2017.07.139

Khan, A.; Song, F.; Zhou, A.; Gao, X.; Feng, M.; Ikram, M.; Hu, H.; Sang, X.; Liu, L. Tuning white light upconversion emission from Yb3+/Er3+/Tm3+ triply doped CaZrO3 by altering Tm3+ concentration and excitation power. J. Alloys Compd. 2020, 835, 155286. https://doi.org/10.1016/j.jallcom.2020.155286

Khan, A.; Song, F.; Gao, X.; Chen, Z.; Sang, X.; Feng, M.; Liu, L. Introduction of Molybdenum into the lattice of single-host CaZrO3: Dy3+/Eu3+ to enhance luminescence intensity of the phosphor for white light emission. J. Alloys Compd. 2021, 881, 160652. https://doi.org/10.1016/j.jallcom.2021.160652

Kumar, S. G. P.; Krishna, R. H.; Kottam, N.; Murthy, P. K.; Manjunatha, C.; Preetham, R.; Shivakumara, C.; Thomas, T. Understanding the photoluminescence behaviour in nano CaZrO3:Eu3+ pigments by Judd-Ofelt intensity parameters. Dyes Pigm. 2018, 150, 306–314. https://doi.org/10.1016/j.dyepig.2017.12.022

Kumar P. R.; Prasad, N.; Veillon, F.; Prellier, W. Raman spectroscopic and magnetic properties of Europium doped nickel oxide nanoparticles prepared by microwave-assisted hydrothermal method. J. Alloys Compd. 2021, 858, 157639. https://doi.org/10.1016/j.jallcom.2020.157639

Kunti, A. K.; Patra, N.; Harris, R. A.; Sharma, S. K.; Bhattacharyya, D.; Jha, S. N.; Swart, H. C. Structural properties and luminescence dynamics of CaZrO3:Eu3+ phosphors. Inorg. Chem. Front. 2021, 8 (3), 821–836. https://doi.org/10.1039/D0QI01178A

Lahtinen, S.; Wang, Q.; Soukka, T. Long-Lifetime Luminescent Europium(III) Complex as an Acceptor in an Upconversion Resonance Energy Transfer Based Homogeneous Assay. Anal. Chem. 2016, 88 (1), 653–658. https://doi.org/10.1021/acs.analchem.5b02228

Lakde, J.; Mehare, C. M.; Pandey, K. K.; Dhoble, N. S.; Dhoble, S. J. Recent development of Eu3+-doped phosphor for white LED application: A review. J. Phys. Conf. Ser. 2021, 1913, 012029. https://doi.org/10.1088/1742-6596/1913/1/012029

Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785

Levin, I.; Amos, T. G.; Bell, S. M.; Farber, L.; Vanderah, T. A.; Roth, R. S.; Toby, B. H. Phase equilibria, crystal structures, and dielectric anomaly in the BaZrO3–CaZrO3 system. J. Solid State Chem. 2003, 175 (2), 170–181. https://doi.org/10.1016/S0022-4596(03)00220-2

Li, Y.-C.; Chang, Y.-H.; Chang, Y.-S.; Lin, Y.-J.; Laing, C.-H. Luminescence and Energy Transfer Properties of Gd3+ and Tb3+ in LaAlGe2O7. J. Phys. Chem. C 2007, 111 (28), 10682–10688. https://doi.org/10.1021/jp0719107

Liu, X.; Lin, C.; Lin, J. White light emission from Eu3+ in CaIn2O4 host lattices. Appl. Phys. Lett. 2007, 90, 081904. https://doi.org/10.1063/1.2539632

Liu, W.; Zhang, H.; Wang, H.-g.; Zhang, M.; Guo, M. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells. Appl. Surf. Sci. 2017, 422, 304–315. https://doi.org/10.1016/j.apsusc.2017.06.007

Liu, M.; Shu, M.; Yan, J.; Liu, X.; Wang, R.; Hou, Z.; Lin, J. Luminescent net-like inorganic scaffolds with europium-doped hydroxyapatite for enhanced bone reconstruction. Nanoscale 2021, 13 (2), 1181–1194. https://doi.org/10.1039/D0NR05608A

Lovisa, L. X.; Araújo, V. D.; Tranquilin, R. L.; Longo, E.; Li, M. S.; Paskocimas, C. A.; Bomio, M. R. D.; Motta, F. V. White photoluminescence emission from ZrO2 co-doped with Eu3+, Tb3+ and Tm3+. J. Alloys Compd. 2016, 674, 245–251. https://doi.org/10.1016/j.jallcom.2016.03.037

Manohar, A.; Krishnamoorthi, C.; Pavithra, C.; Thota, N. Magnetic Hyperthermia and Photocatalytic Properties of MnFe2O4 Nanoparticles Synthesized by Solvothermal Reflux Method. J. Supercond. Nov. Magn. 2021, 34, 251–259. https://doi.org/10.1007/s10948-020-05685-x

Maurya, A.; Yadav, R. S.; Yadav, R. V; Rai, S. B.; Bahadur, A. Enhanced green upconversion photoluminescence from Ho3+/Yb3+ co-doped CaZrO3 phosphor via Mg2+ doping. RSC Adv. 2016, 6 (114), 113469–113477. https://doi.org/10.1039/C6RA23835A

Mazzo, T. M.; Moreira, M. L.; Pinatti, I. M.; Picon, F. C.; Leite, E. R.; Rosa, I. L. V; Varela, J. A.; Perazolli, L. A.; Longo, E. CaTiO3:Eu3+ obtained by microwave assisted hydrothermal method: A photoluminescent approach. Opt. Mater. 2010, 32, 990–997. https://doi.org/10.1016/j.optmat.2010.01.039

Mazzo, T. M.; Pinatti, I. M.; Macario, L. R.; Avansi Junior, W.; Moreira, M. L.; Rosa, I. L. V.; Mastelaro, V. R.; Varela, J. A.; Longo, E. Europium-doped calcium titanate: Optical and structural evaluations. J. Alloys Compd. 2014, 585, 154–162. https://doi.org/10.1016/j.jallcom.2013.08.174

Mesquita, W. D.; Oliveira, M. C.; Assis, M.; Ribeiro, R. A. P.; Eduardo, A. C.; Teordoro, M. D.; Marques, G. E.; Godinho Júnior, M.; Longo, E.; Gurgel, M. F. C. Unraveling the relationship between bulk structure and exposed surfaces and its effect on the electronic structure and photoluminescent properties of Ba0.5Sr0.5TiO3: A joint experimental and theoretical approach. Mater. Res. Bull. 2021, 143, 111442. https://doi.org/10.1016/j.materresbull.2021.111442

Monkhorst, H. J; Pack, J. D. Special points fro Brillouin-zone integretions. Phys. Rev. B 1976, 13, 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

Muniz, F. T. L.; Miranda, M. A. R.; Santos, C. M.; Sasaki, J. M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. 2016, A72, 385–390. https://doi.org/10.1107/S205327331600365X

Navami, D.; Darshan, G. P.; Basavaraj, R. B.; Sharma, S. C.; Kavyashree, D.; Venkatachalaiah, K. N.; Nagabhushana, H. Shape controllable ultrasound assisted fabrication of CaZrO3:Dy3+ hierarchical structures for display, dosimetry and advanced forensic applications. J. Photochem. Photobiol. A Chem. 2020, 389, 112248. https://doi.org/10.1016/j.jphotochem.2019.112248

Nyein, E. E.; Hömmerich, U.; Heikenfeld, J.; Lee, D. S.; Steckl, A. J.; Zavada, J. M. Spectral and time-resolved photoluminescence studies of Eu-doped GaN. Appl. Phys. Lett. 2003, 82, 1655. https://doi.org/10.1063/1.1560557

Oliveira, M. C.; Gracia, L.; Assis, M.; Rosa, I. L. V.; Gurgel, M. F. C.; Longo, E.; Andrés, J. Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: First principles modeling of the excited electronic states. J. Alloys Compd. 2017, 722, 981–995. https://doi.org/10.1016/j.jallcom.2017.06.052

Oliveira, M. C.; Ribeiro, R. A. P.; Gracia, L.; Lazaro, S. R.; Assis, M.; Oliva, M.; Rosa, I. L. V.; Gurgel, M. F. C.; Longo, E.; Andrés, J. Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO3:Eu3+. CrystEngComm 2018, 20 (37), 5519–5530. https://doi.org/10.1039/C8CE00964C

Ortega, P. P.; Rocha, L. S. R.; Cortés, J. A.; Ramirez, M. A.; Buono, C.; Ponce, M. A.; Simões, A. Z. Towards carbon monoxide sensors based on europium doped cerium dioxide. Appl. Surf. Sci. 2019, 464, 692–699. https://doi.org/10.1016/j.apsusc.2018.09.142

Parchur, A. K.; Ningthoujam, R. S.; Rai, S. B.; Okram, G. S.; Singh, R. A.; Tyagi, M.; Gadkari, S. C.; Tewari, R.; Vatsa, R. K. Luminescence properties of Eu3+ doped CaMoO4 nanoparticles. Dalton Trans. 2011, 40 (29), 7595–7601. https://doi.org/10.1039/c1dt10878f

Parchur, A. K.; Ningthoujam, R. S. Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0 → 7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+. RSC Adv. 2012, 2 (29), 10859–10868. https://doi/10.1039/C2RA22144F.

Peipei, D.; Li, G.; Yun, X.; Zhang, Q.; Liu, D.; Lian, H.; Shang, M.; Lin, J. Thermally stable and highly efficient red-emitting Eu3+-doped Cs3GdGe3O9 phosphors for WLEDs: non-concentration quenching and negative thermal expansion. Light Sci. Appl. 2021, 10, 29. https://doi.org/10.1038/s41377-021-00469-x

Pinatti, I. M.; Nogueira, I. C.; Pereira, W. S.; Pereira, P. F. S.; Gonçalves, R. F.; Varela, J. A.; Longo, E.; Rosa, I. L. V. Structural and photoluminescence properties of Eu3+ doped α-Ag2WO4 synthesized by the green coprecipitation methodology. Dalton Trans. 2015, 44 (40), 17673–17685. https://doi.org/10.1039/C5DT01997D

Pinatti, I. M; Pereira, P. F. S.; Assis, M.; Longo, E.; Rosa, I. L. V. Rare earth doped silver tungstate for photoluminescent applications. J. Alloys Compd. 2019, 771, 433-447. https://doi.org/10.1016/j.jallcom.2018.08.302

Riul, A.; Fonseca, F. A. A.; Pugina, R. S.; Caiut, J. M. A. Tuned structure of europium-doped Al2O3-ytrium luminescent composites and their spectroscopic behavior. J. Lumin. 2021, 233, 117925. https://doi.org/10.1016/j.jlumin.2021.117925

Rosa, I. L. V; Oliveira, M. C.; Assis, M.; Ferrer, M.; André, R. S.; Longo, E.; Gurgel, M. F. C. A theoretical investigation of the structural and electronic properties of orthorhombic CaZrO3. Ceram. Int. 2015, 41 (2), 3069–3074. https://doi.org/10.1016/j.ceramint.2014.10.149

Saif, M.; Abdel-Mottaleb, M. S. A. Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb, Eu and Sm: Preparation, characterization and potential applications. Inorganica Chim. Acta 2007, 360 (9), 2863–2874. https://doi.org/10.1016/j.ica.2006.12.052

Shimokawa, Y.; Sakaida, S.; Iwata, S.; Inoue, K.; Honda, S.; Iwamoto, Y. Synthesis and characterization of Eu3+ doped CaZrO3-based perovskite type phosphors. part II: PL properties related to the two different dominant Eu3+ substitution sites. J. Lumin. 2015, 157 (6), 113–118. https://doi.org/10.1016/j.jlumin.2014.08.042

Silva, J. M. P.; Andrade Neto, N. F.; Oliveira, M. C.; Ribeiro, R. A. P.; Lazaro, S. R.; Gomes, Y. F.; Paskocimas, C. A.; Bomio, M. R. D.; Motta, F. V. Recent progress and approaches on the synthesis of Mn-doped zinc oxide nanoparticles: A theoretical and experimental investigation on the photocatalytic performance. New J. Chem. 2020, 44 (21), 8805–8812. https://doi.org/10.1039/D0NJ01530J

Singh, K.; Rajendran, M.; Devi, R.; Vaidyanathan, S. Narrow-band red-emitting phosphor with negligible concentration quenching for hybrid white LEDs and plant growth applications. Dalton Trans. 2021, 50 (14), 4986–5000. https://doi.org/10.1039/D1DT00449B

Smith, M. D.; Connor, B. A.; Karunadasa, H.I. Tuning the Luminescence of Layered Halide Perovskites. Chem. Rev. 2019, 119 (5), 3104–3139. https://doi.org/10.1021/acs.chemrev.8b00477

Song, E.; Zhao, W.; Zhang, W.; Ming, H.; Yi, Y.; Zhou, M. Fluorescence emission spectrum and energy transfer in Eu and Mn co-doped Ba2Ca(BO3)2 phosphors. J. Lumin. 2010, 130 (12), 2495–2499. https://doi.org/10.1016/j.jlumin.2010.08.021

Targonska, S.; Szyszka, K.; Rewak-Soroczynska, J.; Wiglusz, R. J. A new approach to spectroscopic and structural studies of the nano-sized silicate-substituted hydroxyapatite doped with Eu3+ ions. Dalton Trans. 2019, 48 (23), 8303–8316. https://doi.org/10.1039/C9DT01025D

Tian, X.; Dou, H.; Wu, L. Bi3+-based luminescent thermometry in perovskite-type CaZrO3 phosphor. J. Mater. Sci. Mater. Electron. 2020, 31, 3944–3950. https://doi.org/10.1007/s10854-020-02942-6

Tiwari, N.; Kuraria, R. K.; Kuraria, S. R. Optical studies of Eu3+ doped CaZrO3 phosphor for display device applications. Optik. 2015, 126 (23), 3488–3491. https://doi.org/10.1016/j.ijleo.2015.08.201

Tymiński, A.; Śmiechowicz, E.; Martín, I. R.; Grzyb, T. Ultraviolet- and Near-Infrared-Excitable LaPO4:Yb3+/Tm3+/Ln3+ (Ln = Eu, Tb) Nanoparticles for Luminescent Fibers and Optical Thermometers. ACS Appl. Nano Mater. 2020, 3 (7), 6541–6551. https://doi.org/10.1021/acsanm.0c01025

Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chem. Mater. 2011, 23 (7), 1700–1718. https://doi.org/10.1021/cm1022882

van der Ziel, J. P.; Van Uitert, L. G. Optical Emission Spectrum of Cr3+-Eu3+ Pairs in Europium Gallium Garnet. Phys. Rev. 1969, 186, 332–339. https://doi.org/10.1103/PhysRev.186.332

Vieira, S. A.; Rakov, N.; Araújo, C. B.; Falcão-Filho, E. L. Upconversion luminescence in europium doped Y2O3 powder excited by absorption of three, four, and five infrared photons. Opt. Mater. Express 2019, 9 (10), 3952–3961. https://doi.org/10.1364/OME.9.003952

Wu, F.-N.; Yu, H.-J.; Hu, Y.-Y.; Zhang, H.-D.; Zhang, R.; Li, J.; Liu, B.; Wang, X.-P.; Yang, Y.-G.; Wei, L. Effects of slight structural distortion on the luminescence performance in (Ca1-xEux)WO4 luminescent materials. Luminescence 2021, 36 (1), 237–246. https://doi.org/10.1002/bio.3941

Yamaguchi, S.; Kobayashi, K.; Higuchi, T.; Shin, S.; Iguchi, Y. Electronic transport properties and electronic structure of InO1.5-doped CaZrO3. Solid State Ion. 2000, 136–137, 305–311. https://doi.org/10.1016/S0167-2738(00)00408-2

Yang, L.; Kruse, B. Revised Kubelka--Munk theory. I. Theory and application. J. Opt. Soc. Am. A 2004, 21 (10), 1933–1941. https://doi.org/10.1364/JOSAA.21.001933

Zeba, I.; Ramzan, M.; Ahmad, R.; Shakil, M.; Rizwan, M.; Rafique, M.; Sarfraz, M.; Ajmal, M.; Gillani, S. S. A. First-principles computation of magnesium doped CaZrO3 perovskite: A study of phase transformation, bandgap engineering and optical response for optoelectronic applications. Solid State Commun. 2020, 313 (4), 113907. https://doi.org/10.1016/j.ssc.2020.113907

Zhang, H.; Fu, X.; Niu, S.; Xin, Q. Synthesis and photoluminescence properties of Eu3+-doped AZrO3 (A=Ca, Sr, Ba) perovskite. J. Alloys Compd. 2008, 459 (1–2), 103–106. https://doi.org/10.1016/j.jallcom.2007.04.259

Zhang, J.; Cai, G.; Wang, W.; Ma, L.; Wang, X.; Jin, Z. Tuning of Emission by Eu3+ Concentration in a Pyrophosphate: the Effect of Local Symmetry. Inorg. Chem. 2020, 59 (4), 2241–2247. https://doi.org/10.1021/acs.inorgchem.9b02949

Zheng, H.; Reaney, I. M.; Csete de Györgyfalva, G. D. C.; Ubic, R.; Yarwood, J.; Seabra, M. P.; Ferreira, V. M. Raman spectroscopy of CaTiO3-based perovskite solid solutions. J. Mater. Res. 2004, 19, 488–495. https://doi.org/10.1557/jmr.2004.19.2.488

Zhou, Q.; Fang, Y.; Li, J.; Hong, D.; Zhu, P.; Chen, S.; Tan, K. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 2021, 222, 121548. https://doi.org/10.1016/j.talanta.2020.121548