Journal Home > Volume 13 , Issue 3

Golden-flower fungus, the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea, is considered a potential probiotic fungus based on its anti-obesity effect. However, the classif ication of golden-f lower fungi is still controversial; the anti-obesity effect of golden-f lower fungus polysaccharides remains unknown. In this study, we identify a golden-f lower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis, which resolves the controversy of classif ication. Moreover, we f ind A. cristatus polysaccharides (ACPS) attenuate obesity in rats. ACPS modulate gut bacterial composition, in which Akkermansia, Akkermansia muciniphila, Bacteroides, Romboutsia, Blautia, and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum, hepatic, and fecal total bile acid content. Furthermore, ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity, according to a fecal transplantation experiment. Thus, ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.


menu
Abstract
Full text
Outline
About this article

Polysaccharides of Aspergillus cristatus attenuate obesity by regulating gut microbiota and gut microbiota-related metabolites

Show Author's information Mingzhi Zhua,b,Bohao ShangaFang ZhouaYong YuancFeiyan YincJin CaocJianan HuangaKunbo WangaXin Zengb( )Maiquan Lid( )Zhonghua Liua( )
College of Horticulture, Hunan Agricultural University, Changsha 410128, China
College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
Hunan Tea Group Co., Ltd., Changsha 410128, China
School of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China

Peer review under responsibility of Tsinghua University Press.

Highlights

• Golden-flower fungus in Fu-brick tea was identified as Aspergillus cristatus.

A. cristatus polysaccharides (ACPS) effectively attenuated obesity in rats.

• ACPS regulated short chain fatty acid and bile acid metabolism in gut.

• The anti-obesity of ACPS was attributed to the modulation on gut microbiota.

• ACPS might serve as a prebiotic to treat obesity and modulate gut microbiota.

Abstract

Golden-flower fungus, the only dominant microorganism determining the Fu-brick tea quality through fermentation and the important microbe in Liupao tea, is considered a potential probiotic fungus based on its anti-obesity effect. However, the classif ication of golden-f lower fungi is still controversial; the anti-obesity effect of golden-f lower fungus polysaccharides remains unknown. In this study, we identify a golden-f lower strain as Aspergillus cristatus based on morphological characteristics and multigene phylogeny analysis, which resolves the controversy of classif ication. Moreover, we f ind A. cristatus polysaccharides (ACPS) attenuate obesity in rats. ACPS modulate gut bacterial composition, in which Akkermansia, Akkermansia muciniphila, Bacteroides, Romboutsia, Blautia, and Desulfovibrio are considered the core microbes regulated by ACPS.ACPS increase fecal total short-chain fatty acid content and serum, hepatic, and fecal total bile acid content. Furthermore, ACPS-induced gut microbiota alteration plays a causal role in the protection from obesity, according to a fecal transplantation experiment. Thus, ACPS ameliorate obesity by regulating gut microbiota and gut microbiota-related metabolites.

Keywords: Gut microbiota, Obesity, Polysaccharides, Golden-f lower fungus, Aspergillus cristatus

References(62)

[1]

T.D. Muller, M. Bluher, M.H. Tschop, et al., Anti-obesity drug discovery:advances and challenges, Nat. Rev. Drug Discov. 21 (2022) 201-223. https://doi.org/10.1038/s41573-021-00337-8.

[2]

A.S. Meijnikman, V.E. Gerdes, M. Nieuwdorp, et al., Evaluating causality of gut microbiota in obesity and diabetes in humans, Endocr. Rev. 39 (2018)133-153. https://doi.org/10.1210/er.2017-00192.

[3]

K. Sehgal, S. Khanna, Gut microbiota: a target for intervention in obesity, Expert. Rev. Gastroenterol Hepatol. 15 (2021) 1169-1179. https://doi.org/10.1080/17474124.2021.1963232.

[4]

F. Zhou, Y.L. Li, X. Zhang, et al., Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function, J. Agr. Food Chem. 69 (2021)14530-14543. https://doi.org/10.1021/acs.jafc.1c04553.

[5]

N. Roshanravan, S. Bastani, H. Tutunchi, et al., A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders, Arch. Physiol. Biochem. 129 (2023) 741-751. https://doi.org/10.1080/13813455.2021.1871760.

[6]

A.L. Cunningham, J.W. Stephens, D.A. Harris, A review on gut microbiota:a central factor in the pathophysiology of obesity, Lipids Health Dis. 20(2021) 1-13. https://doi.org/10.1186/s12944-021-01491-z.

[7]

C.J. Chang, C.S. Lin, C.C. Lu, et al., Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota, Nat. Commun. 6(2015) 8489. https://doi.org/10.1038/NCOMMS8489.

[8]

T.R. Wu, C.S. Lin, C.J. Chang, et al., Gut commensal parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis, Gut 68 (2019) 248-262.https://doi.org/10.1136/gutjnl-2017-315458.

[9]

Q.Q. Song, Y.K. Wang, L.X. Huang, et al., Review of the relationships among polysaccharides, gut microbiota, and human health, Food Res. Int.140 (2021) 109858. https://doi.org/10.1016/j.foodres.2020.109858.

[10]

M.Z. Zhu, F. Zhou, J. Ouyang, et al., Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism, Food Funct. 12 (2021) 4105-4116. https://doi.org/10.1039/d0fo01768j.

[11]

Y.L. Chen, J.X. Chen, R.Y. Chen, et al., Comparison of the fungal community, chemical composition, antioxidant activity, and taste characteristics of Fu brick tea in different regions of China, Front. Nutr. 9(2022) 900138. https://doi.org/10.3389/fnut.2022.900138.

[12]

Y.F. Rao, Q. Wen, R.H. Liu, et al., PL-S2, a homogeneous polysaccharide from Radix Puerariae lobatae, attenuates hyperlipidemia via farnesoid X receptor (FXR) pathway-modulated bile acid metabolism, Int. J.Biol. Macromol. 165 (2020) 1694-1705. https://doi.org/10.1016/j.ijbiomac.2020.10.029.

[13]

D.D. Kang, M. Su, Y.W. Duan, et al., Eurotium cristatum, a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota, Food Funct. 10 (2019) 5032-5045. https://doi.org/10.1039/c9fo00604d.

[14]

Z.P. Gong, J. Ouyang, X.L. Wu, et al., Dark tea extracts: chemical constituents and modulatory effect on gastrointestinal function, Biomed. Pharmacother. 130 (2020) 110514. https://doi.org/10.1016/j.biopha.2020.110514.

[15]

W.B. Jia, Y.Q. Zhao, S.Y. Liao, et al., Dynamic changes in the diversity and function of bacterial community during black tea processing, Food Res. Int.161 (2022) 111856. https://doi.org/10.1016/j.foodres.2022.111856.

[16]

Y. Xiao, Y.X. Huang, Y.L. Chen, et al., Characteristic fingerprints and change of volatile organic compounds of dark teas during solid-state fermentation with Eurotium cristatum by using HS-GC-IMS, HS-SPMEGC-MS, E-nose and sensory evaluation, LWT-Food Sci. Technol. 169 (2022)113925. https://doi.org/10.1016/j.lwt.2022.113925.

[17]

M.Z. Zhu, N. Li, F. Zhou, et al., Microbial bioconversion of the chemical components in dark tea, Food Chem. 312 (2020) 126043. https://doi.org/10.1016/j.foodchem.2019.126043.

[18]

Y. Mao, B.Y. Wei, J.W. Teng, et al., Analyses of fungal community by Illumina MiSeq platforms and characterization of Eurotium species on Liupao tea, a distinctive post fermented tea from China, Food Res. Int. 99(2017) 641-649. https://doi.org/10.1016/j.foodres.2017.06.032.

[19]

L. Wang, G.H. Tan, Q.L. Pan, et al., Two species of Aspergillus forming yellow cleistothecia popularly known as “golden flower” in dark brick tea of China, Mycosystema. 34 (2015) 186-195. https://doi.org/10.1016/j.foodres.2017.06.032.

[20]

Y. Rui, P. Wan, G.J. Chen, et al., Simulated digestion and fermentation in vitro by human gut microbiota of intra- and extra-cellular polysaccharides from Aspergillus cristatus, LWT-Food Sci. Technol. 116 (2019) 108508.https://doi.org/10.1016/j.lwt.2019.108508.

[21]

D.M. Liu, J.A. Huang, Y. Luo, et al., Fuzhuan brick tea attenuates highfat diet-induced obesity and associated metabolic disorders by shaping gut microbiota, J. Agr. Food Chem. 67 (2019) 13589-13604.

[22]

Y.X. Peng, Z. Xiong, J. Li, et al., Water extract of the fungi from Fuzhuan brick tea improves the beneficial function on inhibiting fat deposition, Int. J. Food Sci.Nutr. 65 (2014) 610-614. https://doi.org/10.3109/09637486.2014.898253.

[23]

L.S. Ran, B.G. Liu, C.J. Chen, et al., Isolation and identification of “golden flower” fungus and determination of its effects on chemical the composition of Fu tea, J. Radiat. Res. Radiat. Process. 39 (2021) 96-103. https://doi.org/10.1016/j.foodres.2021.110901.

[24]

S.W. Peterson, Phylogenetic analysis of Aspergillus species using DNA sequences from four loci, Mycologia. 100 (2008) 205-226. https://doi.org/10.3852/mycologia.100.2.205.

[25]

V. Hubka, M. Kolarik, A. Kubatova, et al., Taxonomic revision of Eurotium and transfer of species to Aspergillus, Mycologia. 105 (2013) 912-937.https://doi.org/10.3852/12-151.

[26]

Y. Xiao, M.Y. Li, Y. Liu, et al., The effect of Eurotium cristatum (MF800948)fermentation on the quality of autumn green tea, Food Chem. 358 (2021)129848. https://doi.org/10.1016/j.foodchem.2021.129848.

[27]

T. Sang, C. Guo, D. Guo, et al., Suppression of obesity and inflammation by polysaccharide from sporoderm-broken spore of Ganoderma lucidum via gut microbiota regulation, Carbohydr. Polym. 256 (2021) 117594. https://doi.org/10.1016/j.carbpol.2020.117594.

[28]

M. Wang, G. Chen, D. Chen, et al., Purified fraction of polysaccharides from Fuzhuan brick tea modulates the composition and metabolism of gut microbiota in anaerobic fermentation in vitro, Int. J. Biol. Macromol. 140(2019) 858-870. https://doi.org/10.1016/j.ijbiomac.2019.08.187.

[29]

Z. Xie, Y. Bai, G. Chen, et al., Immunomodulatory activity of polysaccharides from the mycelium of Aspergillus cristatus, isolated from Fuzhuan brick tea, associated with the regulation of intestinal barrier function and gut microbiota, Food Res. Int. 152 (2022) 110901. https://doi.org/10.1016/j.foodres.2021.110901.

[30]

M.Z. Zhu, F. Zhou, J. Ouyang, et al., Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism, Food Funct. 12 (2021) 4105-4116. https://doi.org/10.1039/d0fo01768j.

[31]

H. Yang, W. Wang, K.A. Romano, et al., A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice, Sci. Transl. Med. 10 (2018) 4116. https://doi.org/10.1126/scitranslmed.aan4116.

[32]

Y.W. Li, Z. Yu, Y.Y. Liu, et al., Dietary alpha-linolenic acid-rich flaxseed oil ameliorates high-fat diet-induced atherosclerosis via gut microbiotainflammation-artery axis in ApoE−/− mice, Front. Cardiovasc. Med. 9 (2022)830781. https://doi.org/10.3389/fcvm.2022.830781.

[33]

X.X. Huang, S.S. Yu, S. Chen, et al., Complementary transcriptomic and metabolomics analysis reveal the molecular mechanisms of EGCG3”Me biosynthesis in Camellia sinensis, Sci. Hortic-Amstredam. 304 (2022)111340. https://doi.org/10.1016/j.scienta.2022.111340.

[34]

X.X. Huang, Q. Tang, Q. Li, et al., Integrative analysis of transcriptome and metabolome reveals the mechanism of foliar application of Bacillus amyloliquefaciens to improve summer tea quality (Camellia sinensis), Plant Physiol. Bioch. 185 (2022) 302-313. https://doi.org/10.1016/j.plaphy.2022.06.016.

[35]

M.Z. Zhu, F. Zhou, L.S. Ran, et al., Metabolic profiling and gene expression analyses of purple-leaf formation in tea cultivars (Camellia sinensis var.sinensis and var. assamica), Front. Plant Sci. 12 (2021) 606962. https://doi.org/10.3389/fpls.2021.606962.

[36]

X.X. Huang, S.Q. Ou, Q. Li, et al., The R2R3 transcription factor csmyb59 regulates polyphenol oxidase gene CsPPO1 in tea plants (Camellia sinensis), Front. Plant Sci. 12 (2021) 39951. https://doi.org/10.3389/fpls.2021.739951.

[37]

M.Z. Zhu, D.M. Lu, J. Ouyang, et al., Tea consumption and colorectal cancer risk: a meta-analysis of prospective cohort studies, Eur. J. Nutr. 59 (2020)3603-3615. https://doi.org/10.1007/s00394-020-02195-3.

[38]

M.Z. Zhu, B.B. Wen, H. Wu, et al., The quality control of tea by nearinfrared reflectance (NIR) spectroscopy and chemometrics, J. Spectrosc.2019 (2019) 8129648. https://doi.org/10.1155/2019/8129648.

[39]

Z. Yang, M.Z. Zhu, Y.B. Zhang, et al., Coadministration of epigallocatechin-3-gallate (EGCG) and caffeine in low dose ameliorates obesity and nonalcoholic fatty liver disease in obese rats, Phytother. Res. 33 (2019)1019-1026. https://doi.org/10.1002/ptr.6295.

[40]

M.Z. Zhu, N. Li, M. Zhao, et al., Metabolomic profiling delineate taste qualities of tea leaf pubescence, Food Res. Int. 94 (2017) 36-44. https://doi.org/10.1016/j.foodres.2017.01.026.

[41]

F. Zhou, M.Z. Zhu, J.Y. Tang, et al., Six types of tea extracts attenuated high-fat diet-induced metabolic syndrome via modulating gut microbiota in rats, Food Res. Int. 161 (2022) 111788. https://doi.org/10.1016/j.foodres.2022.111788.

[42]

Y.Z. Ge, S. Ahmed, W.Z. Yao, et al., Regulation effects of indigestible dietary polysaccharides on intestinal microflora: an overview, J. Food Bioch.45 (2021) 13564. https://doi.org/10.1111/jfbc.13564.

[43]

L.A. David, C.F. Maurice, R.N. Carmody, et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature 505 (2014) 559.https://doi.org/10.1038/nature12820.

[44]

Q. Zhao, J. Yu, Y. Hao, et al., Akkermansia muciniphila plays critical roles in host health, Crit. Rev. Microbiol. 49 (2023) 82-100. https://doi.org/10.108 0/1040841x.2022.2037506.

[45]

Y.G. Cao, S. Bae, J. Villarreal, et al., Faecalibaculum rodentium remodels retinoic acid signaling to govern eosinophil-dependent intestinal epithelial homeostasis, Cell Host Microbe. 30 (2022) 1295-1310. https://doi.org/10.1016/j.chom.2022.07.015.

[46]

.X. Li, P. Chen, P. Zhang, et al., Protein-bound beta-glucan from coriolus versicolor has potential for use against obesity, Mol. Nutr. Food Res. 63(2019) 1801231. https://doi.org/10.1002/mnfr.201801231.

[47]

V.L. Hale, J. Chen, S. Johnson, et al., Shifts in the fecal microbiota associated with adenomatous polyps, Cancer Epidem. Biomar. 26 (2017) 85-94. https://doi.org/10.1158/1055-9965.Epi-16-0337.

[48]

A. Amaretti, C. Gozzoli, M. Simone, et al., Profiling of protein degraders in cultures of human gut microbiota, Front. Microbiol. 10 (2019) 2614. https://doi.org/10.3389/fmicb.2019.02614.

[49]

X. Guo, R. Tang, S. Yang, et al., Rutin and its combination with inulin attenuate gut dysbiosis, the inflammatory status and endoplasmic reticulum stress in paneth cells of obese mice induced by high-fat diet, Front.Microbiol. 9 (2018) 2651. https://doi.org/10.3389/fmicb.2018.02651.

[50]

X.Y. Zhang, J. Chen, K. Yi, et al., Phlorizin ameliorates obesity-associated endotoxemia and insulin resistance in high-fat diet-fed mice by targeting the gut microbiota and intestinal barrier integrity, Gut Microbes. 12 (2020) 2990.https://doi.org/10.1080/19490976.2020.1842990.

[51]

Z. Dandan, L. Juan, C. Hao, et al., Interactions between polysaccharides and gut microbiota: a metabolomic and microbial review, Food Res. Int. 160(2022) 111653-111653. https://doi.org/10.1016/j.foodres.2022.111653.

[52]

H.B. Overby, J.F. Ferguson, Gut microbiota-derived short-chain fatty acids facilitate microbiota: host cross talk and modulate obesity and hypertension, Curr. Hypertens. Rep. 23 (2021) 8. https://doi.org/10.1007/s11906-020-01125-2.

[53]

J. Du, P. Zhang, J. Luo, et al., Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family, Gut Microbes. 13 (2021)e1862612. https://doi.org/10.1080/19490976.2020.1862612.

[54]

A. Pingitore, E.S. Chambers, T. Hill, et al., The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro, Diabetes Obes. Metab. 19 (2017) 257-265. https://doi.org/10.1111/dom.12811.

[55]

J. Shen, M.S. Obin, L.P. Zhao, The gut microbiota, obesity and insulin resistance, Mol. Aspects Med. 34 (2013) 39-58. https://doi.org/10.1016/j.mam.2012.11.001.

[56]

C. Yang, Z. Xu, Q. Deng, et al., Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice, Food Res. Int. 131 (2020) 108994. https://doi.org/10.1016/j.foodres.2020.108994.

[57]

Y.Q. Xu, Y. Zhu, X.T. Li, et al., Dynamic balancing of intestinal shortchain fatty acids: the crucial role of bacterial metabolism, Trends Food Sci.Technol. 100 (2020) 118-130. https://doi.org/10.1016/j.tifs.2020.02.026.

[58]

X. Wei, L. Yu, C. Zhang, et al., Prebiotic activity of chitooligosaccharides and their ability to alleviate necrotizing enterocolitis in newborn rats, Carbohydr. Polym. 299 (2023) 120156. https://doi.org/10.1016/j.carbpol.2022.120156.

[59]

G. Maheshwari, D.K. Gessner, K. Neuhaus, et al., Influence of a biotechnologically produced oyster mushroom (Pleurotus sajor-caju) on the gut microbiota and microbial metabolites in obese zucker rats, J. Agr. Food Chem. 69 (2021) 1524-1535. https://doi.org/10.1021/acs.jafc.0c06952.

[60]

R. Ghani, B.H. Mullish, L.A. Roberts, et al., The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases, Gut Microbes. 14 (2022) 8856. https://doi.org/10.1080/19490976.2022.2038856.

[61]

P. Wang, J.P. Gao, W.X. Ke, et al., Resveratrol reduces obesity in highfat diet-fed mice via modulating the composition and metabolic function of the gut microbiota, Free Radical Bio. Med. 156 (2020) 83-98. https://doi.org/10.1016/j.freeradbiomed.2020.04.013.

[62]

J. Wang, P. Wang, D. Li, et al., Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice, Eur. J. Nutr. 59 (2020)699-718. https://doi.org/10.1007/s00394-019-01938-1.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 October 2022
Revised: 02 December 2022
Accepted: 16 January 2023
Published: 08 February 2024
Issue date: May 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

Acknowledgements

This research was financially supported by Natural Science Foundation of China (32002095 and 32172217), Major Project of Science and Technology of Guangxi Zhuang Autonomous Region (AA20302018), Key Research and Development Program of Hunan Province (2020WK2017), Hunan “Three Top” Innovative Talents Project (2022RC1142), Natural Science Foundation of Hunan Province for Outstanding Young Scholars (2022JJ20028), Training Program for Excellent Young Innovators of Changsha (kq2107015), and Scientific Research Fund of the Hunan Provincial Education Department (20A241).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return