Journal Home > Volume 13 , Issue 1

Polymethoxyflavones (PMFs) are a type of uncommon dietary flavonoids, characterized by more than one methoxy group, which exist in limited plant species, like Citrus species and Kaempferia parviflora. In addition, different PMFs, such as nobiletin, sinensetin, tangeretin, and casticin, have been isolated from these natural sources. PMFs have received increasing attention due to their multiple bioactivities, such as antioxidant, anti-inflammatory, anti-cancer, metabolic regulatory, immunoregulatory, neuroprotective, and skin protective effects. These bioactivities of PMFs should be associated with the regulation of critical molecular targets and the interaction with gut microbiota. In order to provide a comprehensive and updated review of PMFs, their natural sources, refined extraction, biosynthesis, metabolism, and bioactivities are summarised and discussed, with the emphasis on the molecular mechanisms of PMFs on regulating different chronic diseases. Overall, PMFs may be promising flavonoids to the forefront of nutraceuticals for the prevention and/or treatment of certain human chronic diseases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Natural sources, refined extraction, biosynthesis, metabolism, and bioactivities of dietary polymethoxyflavones (PMFs)

Show Author's information Renyou Gana,b,1( )Yi Liua,1Hang LiaYu XiaaHuan GuoaFang GengbQiguo ZhuangcHuabin LidDingtao Wub,( )
Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Centre of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
China-New Zealand Belt and Road Joint Laboratory on Kiwifruit, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610213, China
Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China

1 These authors contributed equally to the work.

Peer review under responsibility of Tsinghua University Press.

Abstract

Polymethoxyflavones (PMFs) are a type of uncommon dietary flavonoids, characterized by more than one methoxy group, which exist in limited plant species, like Citrus species and Kaempferia parviflora. In addition, different PMFs, such as nobiletin, sinensetin, tangeretin, and casticin, have been isolated from these natural sources. PMFs have received increasing attention due to their multiple bioactivities, such as antioxidant, anti-inflammatory, anti-cancer, metabolic regulatory, immunoregulatory, neuroprotective, and skin protective effects. These bioactivities of PMFs should be associated with the regulation of critical molecular targets and the interaction with gut microbiota. In order to provide a comprehensive and updated review of PMFs, their natural sources, refined extraction, biosynthesis, metabolism, and bioactivities are summarised and discussed, with the emphasis on the molecular mechanisms of PMFs on regulating different chronic diseases. Overall, PMFs may be promising flavonoids to the forefront of nutraceuticals for the prevention and/or treatment of certain human chronic diseases.

Keywords: Gut microbiota, Molecular mechanism, Bioactivities, Nobiletin, O-Methyltransferases

References(136)

[1]

A.M. Batenburg, T.D. Joode, R.J. Gouka, Characterization and modulation of the bitterness of polymethoxyflavones using sensory and receptor-based methods, J. Agric. Food Chem. 64(12) (2016) 2619-2626. https://doi.org/10.1021/acs.jafc.5b05833.

[2]

I. Yoshida, M. Kumagai, M. Ide, et al., Polymethoxyflavones in black ginger (Kaempferia parviflora) regulate the expression of circadian clock genes, J. Funct. Foods 68 (2020) 103900. https://doi.org/10.1016/j.jff.2020.103900.

[3]

J. Wang, C. Xu, Y.K. Wong, et al., Artemisinin, the magic drug discovered from traditional Chinese medicine, Engineering 5(1) (2019) 32-39. https://doi.org/10.1016/j.eng.2018.11.011.

[4]

R. Baraldi, B. Isacchi, S. Predieri, et al., Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth, Biochem. Syst. Ecol. 36(5/6) (2008) 340-348. https://doi.org/10.1016/j.bse.2007.11.002.

[5]

D. Tasdemir, M. Tierney, R. Sen, et al., Antiprotozoal effect of Artemisia indica extracts and essential oil, Planta Med. 81(12/13) (2015) 1029-1037. https://doi.org/10.1055/s-0035-1546125.

[6]

W.R. Sawadogo, C. Cerella, A. Al-Mourabit, et al., Cytotoxic, antiproliferative and pro-apoptotic effects of 5-hydroxyl-6,7,3',4',5'-pentamethoxyflavone isolated from Lantana ukambensis, Nutrients 7(12)(2015) 10388-10397. https://doi.org/10.3390/nu7125537.

[7]

Y.L. Shih, H.M. Chou, H.C. Chou., et al., Casticin impairs cell migration and invasion of mouse melanoma B16F10 cells via PI3K/AKT and NF-κB signaling pathways, Environ. Toxicol. 32(9) (2017) 2097-2112. https://doi.org/10.1002/tox.22417.

[8]

A. Sato, H. Tamura, High antiallergic activity of 5,6,4'-trihydroxy-7,8,3'-trimethoxyflavone and 5,6-dihydroxy-7,8,3',4'-tetramethoxyflavone from eau de cologne mint (Mentha × piperita citrata), Fitoterapia 102 (2015) 74-83. https://doi.org/10.1016/j.fitote.2015.02.003.

[9]

E. Wollenweber, J.F. Stevens, M. Ivancic, Flavonoid aglycones and a thiophene derivative from Helichrysum cassianum, Phytochemistry 47(7)(1998) 1441-1443. https://doi.org/10.1016/S0031-9422(97)00738-3.

[10]

C.S. Cao, B.L. Liu, C.G. Zeng, et al., A polymethoxyflavone from Laggera pterodonta induces apoptosis in imatinib-resistant K562R cells via activation of the intrinsic apoptosis pathway, Cancer Cell Int. 14(1) (2014) 137. https://doi.org/10.1186/s12935-014-0137-1.

[11]

P.F. Sehlakgwe, N. Lall, G. Prinsloo, 1H-NMR metabolomics and LC-MS analysis to determine seasonal variation in a cosmeceutical plant Leucosidea serice, Front. Pharmacol 5(11) (2020) 219. https://doi.org/10.3389/fphar.2020.00219.

[12]

M.S. Shajib, R.B. Rashid, L.C. Ming, et al., Polymethoxyflavones from Nicotiana plumbaginifolia (Solanaceae) exert antinociceptive and neuropharmacological effects in mice, Front. Pharmacol. 9 (2018) 85. https://doi.org/10.3389/fphar.2018.00085.

[13]

Y. Liu, H.Y. Liu, S.H. Li, et al., Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: an updated review, Trends. Analyt. Chem. 149 (2022) 116554. https://doi.org/10.1016/j.trac.2022.116554.

[14]

H. Li, H. Guo, Q. Luo, et al., Current extraction, purification, and identification techniques of tea polyphenols: an updated review, Crit. Rev. Food Sci. Nutr. 27 (2021) 1-19. https://doi/10.1080/10408398.2021.1995843.

[15]

Q. Yu, W. Chen, J. Zhong, et al., Purification, structural characterization, and bioactivities of a polysaccharide from Coreopsis tinctoria, Food Frontiers (2022) 1-13. https://doi.org/10.1002/fft2.145.

[16]

Y. Liu, K.W. Kong, D.T. Wu, et al., Pomegranate peel-derived punicalagin: ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism, Food Chem. 374 (2022) 131635. https://doi.org/10.1016/j.foodchem.2021.131635.

[17]

C.Y. Zhao, F. Wang, Y.H. Lian, et al., Biosynthesis of citrus flavonoids and their health effects, Crit. Rev. Food Sci. Nutr. 60(4) (2020) 566-583. https://doi.org/10.1080/10408398.2018.1544885.

[18]

N. Itoh, C. Iwata, H. Toda, Molecular cloning and characterization of a flavonoid-O-methyltransferase with broad substrate specificity and regioselectivity from Citrus depressa, BMC. Plant Biol. 16(1) (2016) 180. https://doi.org/10.1186/s12870-016-0870-9.

[19]

X. Liu, C. Zhao, Q. Gong, et al., Characterization of a caffeoyl-CoA O-methyltransferase-like enzyme involved in biosynthesis of polymethoxylated flavones in Citrus reticulata, J. Exp. Bot. 71(10) (2020b) 3066-3079. https://doi.org/10.1093/jxb/eraa083.

[20]

X.J. Liu, Y. Wang, Y.Z. Chen, et al., Characterization of a flavonoid 3'5'7-O-methyltransferase from Citrus reticulata and evaluation of the in vitro cytotoxicity of its methylated products, Molecules 25(4) (2020a) 858. https://doi.org/10.3390/molecules25040858.

[21]

F. Zohra, S. Takematsu, Y. Itami, et al., Accumulation of polymethoxyflavones and O-methyltransferase gene expression in various citrus cultivars, Sci. Hortic. 89(3) (2020) 225-236. https://doi.org/10.2503/hortj.UTD-146.

[22]

M, Seoka, G. Ma, L. Zhang, et al., Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit, Sci. Rep. 10(1)(2020) 15288. https://doi.org/10.1038/s41598-020-72277-z.

[23]

G. Ma, L. Zhang, M. Seoka, et al., Characterization of a caffeic acid 8-O-methyltransferase from citrus and its function in nobiletin biosynthesis, J. Agric. Food. Chem. 70(2) (2022) 543-553. https://doi.org/10.1021/acs.jafc.1c06513.

[24]

S.M. Li, M.H. Pan, C.Y. Lo, et al., Chemistry and health effects of polymethoxyflavones and hydroxylated polymethoxyflavones, J. Funct. Foods 1(1) (2009) 2-12. https://doi.org/10.1016/j.jff.2008.09.003.

[25]

A. Karn, C.Y. Zhao, F.L. Yang, et al., In vivo biotransformation of citrus functional components and their effects on health, Crit. Rev. Food Sci. Nutr. 61(5) (2021) 756-776. https://doi.org/10.1080/10408398.2020.1746234.

[26]

M. Kim, N. Kim, J. Han, Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1, J. Agric. Food Chem. 62(51) (2014) 12377-12383. https://doi.org/10.1021/jf504074n.

[27]

M. Zhang, Y. Xin, K. Feng, et al., Comparative analyses of bioavailability, biotransformation, and excretion of nobiletin in lean and obese rats, J. Agric. Food. Chem. 68(39) (2020) 10709-10718. https://doi.org/10.1021/acs.jafc.0c04425.

[28]

J.B. Chen, Y. Wang, T.L. Zhu, et al., Beneficial regulatory effects of polymethoxyflavone-rich fraction from Ougan (Citrus reticulata cv. Suavissima) fruit on gut microbiota and identification of its intestinal metabolites, Antioxidants 9(9) (2020) 831. https://doi.org/10.3390/antiox9090831.

[29]

Y.C. Tung, W.T. Chang, S.M. Li, et al., Citrus peel extracts attenuated obesity and modulated gut microbiota in mice with high-fat diet-induced obesity, Food Funct. 9(6) (2018) 3363-3373. https://doi.org/10.1039/c7fo02066j.

[30]

M. Zhang, J.Y. Zhu, X. Zhang, et al., Aged citrus peel (Chenpi) extract causes dynamic alteration of colonic microbiota in high-fat diet induced obese mice, Food Funct. 11(3) (2020) 2667-2678. https://doi.org/10.1039/c9fo02907a.

[31]

M.Y. Wang, H. Zhao, X. Wen, et al., Citrus flavonoids and the intestinal barrier: interactions and effects, Compr. Rev. Food Sci. Food Saf. 20(1)(2021) 225-251. https://doi.org/10.1111/1541-4337.12652.

[32]

M. Falduto, F. Smedile, M. Zhang, et al., Anti-obesity effects of Chenpi: an artificial gastrointestinal system study, Microb. Biotechnol. 15(3) (2022) 874-885. https://10.1111/1751-7915.14005.

[33]

J. Chen, Y. Wang, T. Zhu, et al., Beneficial regulatory effects of polymethoxyflavone-rich fraction from ougan (Citrus reticulata cv. Suavissima) fruit on gut microbiota and identification of its intestinal metabolites in mice, Antioxidants (Basel) 9(9) (2020) 831. https://10.3390/antiox9090831.

[34]

J.C. Wu, M.L. Tsai, C.S. Lai, et al., Polymethoxyflavones prevent benzo[a]pyrene/dextran sodium sulfate-induced colorectal carcinogenesis through modulating xenobiotic metabolism and ameliorate autophagic defect in ICR mice, Int. J. Cancer. 142(8) (2018) 1689-1701. https://10.1002/ijc.31190.

[35]

L. Fu, B.T. Xu, X.R. Xu, et al., Antioxidant capacities and total phenolic contents of 62 fruits, Food Chem. 129(2) (2011) 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079.

[36]

G.Y. Tang, C.N. Zhao, X.Y. Xu, et al., Phytochemical composition and antioxidant capacity of 30 Chinese teas, Antioxidants 8(6) (2019) 180. https://doi.org/10.3390/antiox8060180.

[37]

D.P. Xu, Y. Li, X. Meng, et al., Natural antioxidants in foods and medicinal plants: extraction, assessment and resources, Int. J. Mol. Sci. 18(1) (2017) 96. https://doi.org/10.3390/ijms18010096.

[38]

H. Khan, H. Ullah, R. Tundis, et al., Dietary flavonoids in the management of Huntington's disease: mechanism and clinical perspective, eFood 1(1)(2020) 38-52. https://doi.org/10.2991/efood.k.200203.001.

[39]

S. Horigome, I. Yoshida, S. Ito, et al., Inhibitory effects of Kaempferia parviflora extract on monocyte adhesion and cellular reactive oxygen species production in human umbilical vein endothelial cells, Eur. J. Nutr. 56(3)(2017) 949-964. https://doi.org/10.1007/s00394-015-1141-5.

[40]

X.Z. Dai, X.Q. Yan, K.A. Wintergerst, et al., Nrf2: redox and metabolic regulator of stem cell state and function, Trends Mol. Med. 26(2) (2020) 185-200. https://doi.org/10.1016/j.molmed.2019.09.007.

[41]

F.Q. Liang, Y.J. Fang, W.W. Cao, et al., Attenuation of tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells by tangeretin: relevance of the Nrf2-ARE and MAPK signaling pathways, J. Agric. Food Chem. 66(25) (2018) 6317-6325. https://doi.org/10.1021/acs.jafc.8b01875.

[42]

M.X. Z h o u, G.H. L i, X.Y. W u, e t a l., (2 S)-5,6,7,3',4'-pentamethoxyflavanone, a citrus polymethoxyflavone ameliorates arsenicand cigarette smoke extract-induced cytotoxicity via activating Nrf2-mediated defense system, J. Funct. Foods 54 (2019) 337-347. https://doi.org/10.1016/j.jff.2019.01.019.

[43]

Y. Wang, R. Jin, J. Chen, et al., Tangeretin maintains antioxidant activity by reducing CUL3 mediated NRF2 ubiquitination, Food Chem. 15(365) (2021) 130470. https://doi.org/10.1016/j.foodchem.2021.130470.

[44]

M. Wang, D. Meng, P. Zhang, et al., Antioxidant protection of nobiletin, 5-demethylnobiletin, tangeretin, and 5-demethyltangeretin from citrus peel in Saccharomyces cerevisiae, J. Agric. Food Chem. 66(12) (2018) 3155-3160. https://doi.org/10.1021/acs.jafc.8b00509.

[45]

J.M. Hyun, Y.J. Jo, J.E. Kim, et al., Tetramethyl-O-scutellarin isolated from peels of immature shiranuhi fruit exhibits anti-inflammatory effects on LPSinduced RAW264.7 cells, Trop. J. Pharm. Res. 16(9) (2017) 2197-2205. https://doi.org/10.4314/tjpr.v16i9.22.

[46]

Y. Wang, W. Zang, S. Ji, et al., Three polymethoxyflavones purified from Ougan (Citrus reticulata cv. Suavissima) inhibited LPS-induced NO elevation in the neuroglia BV-2 cell line via the JAK2/STAT3 pathway, Nutrients 11(4) (2019) 1-16. https://doi.org/10.3390/nu11040791.

[47]

Z.B. Liu, S.G. Guo, Q.R. Dong, Nobiletin suppresses IL-21/IL-21 receptormediated inflammatory response in MH7A fibroblast-like synoviocytes (FLS): an implication in rheumatoid arthritis, Eur. J. Pharmacol. 875 (2020) 172939. https://doi.org/10.1016/j.ejphar.2020.172939.

[48]
J. Lorenzo, Cytokines and the pathogenesis of osteoporosis, in: Marcus and Feldman's Osteoporosis, Fifth Edition ed., Academic Press, 2021, pp. 799-831.
DOI
[49]

Y. Ohyama, J. Ito, V.J. Kitano, et al., The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors, PLoS One 13(1) (2018) e0191192. https://doi.org/10.1371/journal.pone.0191192.

[50]

B. Liu, J. Huang, B, Zhang, Nobiletin protects against murine l-arginineinduced acute pancreatitis in association with downregulating p38MAPK and AKT, Biomed. Pharmacother. 81 (2016) 104-110. https://doi.org/10.1016/j.biopha.2016.03.051.

[51]

R.Y. Gan, H.B. Li, Z.Q. Sui, et al., Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review, Crit. Rev. Food Sci. Nutr. 58(6) (2018) 924-941. https://doi.org/10.1080/10408398.2016.1231168.

[52]

X.Y. Xu, X. Meng, S. Li, et al., Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives, Nutrients 10(10) (2018) 1553. https://doi.org/10.3390/nu10101553.

[53]

X. Meng, J. Zhou, C.N. Zhao, et al., Health benefits and molecular mechanisms of resveratrol: a narrative review, Foods 9(3) (2020) 340. https://doi.org/10.3390/foods9030340.

[54]

A.K. Farha, R.Y. Gan, H.B. Li, et al., The anticancer potential of the dietary polyphenol rutin: current status, challenges, and perspectives, Crit. Rev. Food Sci. Nutr. 62(3) (2020) 832-859. https://doi.org/10.1080/10408398.2020.1829541.

[55]

A. Shang, H.Y. Liu, M. Luo, et al., Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits, Crit. Rev. Food Sci. Nutr. 62(4) (2020) 917-934 https://doi.org/10.1080/10408398.2020.1830363.

[56]

J.X. Goh, L.T. Tan, J.K. Goh, et al., Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention, Cancers (Basel) 11(6) (2019) 867. https://doi.org/10.3390/cancers11060867.

[57]

X. Wang, M. Xia, 5-Hydroxy-3,6,7,8,3',4'-hexamethoxyflavone, a polymethoxyflavone, exerts antitumor effect on PI3K/Akt signaling pathway in human gastric cancer cell BGC-7901, J. Recept. Sig. Transd. 36(5) (2016) 471-477. https://doi.org/10.3109/10799893.2015.1122046.

[58]

J.Y. Moon, S.K. Cho, Nobiletin induces protective autophagy accompanied by ER-stress mediated apoptosis in human gastric cancer SNU-16 cells, Molecules 21(7) (2016) 914. https://doi.org/10.3390/molecules21070914.

[59]

Y.P. Jiang, H. Guo, X.B. Wang, Nobiletin (NOB) suppresses autophagic degradation via over-expressing AKT pathway and enhances apoptosis in multidrug-resistant SKOV3/TAX ovarian cancer cells, Biomed. Pharmacother. 103 (2018) 29-37. https://doi.org/10.1016/j.biopha.2018.03.126.

[60]

J.H. Yen, C.Y. Lin, C.H. Chuang, et al., Nobiletin promotes megakaryocytic differentiation through the MAPK/ERK-dependent EGR1 expression and exerts anti-leukemic effects in human chronic myeloid leukemia (CML) K562 cells, Cells 9(4) (2020) 877. https://doi.org/10.3390/cells9040877.

[61]

H.S. Shang, J.Y. Liu, H.F. Lu, et al. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells, Environ. Toxicol. 32(8) (2017) 2041-2052. https://doi.org/10.1002/tox.22381.

[62]

G.L. Chou, S.F. Peng, C.L. Liao, et al., Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells, Environ. Toxicol. 33(2) (2018) 127-141. https://doi.org/10.1002/tox.22497.

[63]

Y.W. Shiue, C.C. Lu, Y.P. Hsiao, et al., Casticin induced apoptosis in A375. S2 human melanoma cells through the inhibition of NF-κB and mitochondria-dependent pathways in vitro and inhibited human melanoma xenografts in a mouse model in vivo, Am. J. Chinese Med. 44(3) (2016) 637-661. https://doi.org/10.1142/S0192415X1650035X.

[64]

Y.P. Cheng, S. Li, W.L. Chuang, et al., Blockade of STAT3 signaling contributes to anticancer effect of 5-acetyloxy-6,7,8,4'-tetra-methoxyflavone, a tangeretin derivative, on human glioblastoma multiforme cells, Int. J. Mol. Sci. 20(13) (2019) 3366. https://doi.org/10.3390/ijms20133366.

[65]

X. Wu, M.Y. Song, Z.L. Gao, et al., Nobiletin and its colonic metabolites suppress colitis-associated colon carcinogenesis by down-regulating iNOS, inducing antioxidative enzymes and arresting cell cycle progression, J. Nutr. Biochem. 42 (2017) 17-25. https://doi.org/10.1016/j.jnutbio.2016.12.020.

[66]

W.B. Zhu, N. Xiao, X.J. Liu, Dietary flavonoid tangeretin induces reprogramming of epithelial to mesenchymal transition in prostate cancer cells by targeting the PI3K/Akt/mTOR signaling pathway, Oncol. Lett. 15(1)(2018) 433-440. https://doi.org/10.3892/ol.2017.7307.

[67]

H.L. Cheng, M.J. Hsieh, J.S. Yang, et al., Nobiletin inhibits human osteosarcoma cells metastasis by blocking ERK and JNK-mediated MMPs expression, Oncotarget. 7(23) (2016) 35208-35223. https://doi.org/10.18632/oncotarget.9106.

[68]

J. Li, Z. Li, F. Zheng, Nobiletin inhibits proliferation, invasion, migration and angiogenesis in colorectal cancer cells, J. Biomater. Tissue. Eng. 9(6)(2019) 662-667. https://doi.org/10.1166/jbt.2019.2022.

[69]

C.C. Lin, K.B. Chen, C.H. Tsai, et al., Casticin inhibits human prostate cancer DU 145 cell migration and invasion via Ras/Akt/NF-κB signaling pathways, J. Food. Biochem. 43(7) (2019) e12902. https://doi.org/10.1111/jfbc.12902.

[70]

M. Schmittnaegel, N. Rigamonti, E. Kadioglu, , et al., Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade, Sci. Transl. Med. 9(385) (2017) eaak9670. https://doi.org/10.1126/scitranslmed.aak9670.

[71]

Q. Gong, X.Z. Cao, J.G. Cao, et al., Casticin suppresses the carcinogenesis of small cell lung cancer H446 cells through activation of AMPK/FoxO3a signaling, Oncol. Rep. 40(3) (2018) 1401-1410. https://doi.org/10.3892/or.2018.6547.

[72]

Y.R. Ma, X. Ren, N.D.N. Patel, et al., Nobiletin, a citrus polymethoxyflavone, enhances the effects of bicalutamide on prostate cancer cells via down regulation of NF-κB, STAT3, and ERK activation, RSC. Advances 10 (17)(2020) 10254-10262. https://doi.org/10.1039/C9RA10020B.

[73]

X. Wu, M. Song, P. Qiu, et al., Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis, Carcinogenesis 38(4)(2017) 455-464. https://doi.org/10.1093/carcin/bgx018.

[74]

G.R. Gandhi, A.B. S Vasconcelos, D.T. Wu, et al., Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies, Nutrients 12 (2020) 2907. https://doi.org/10.3390/nu12102907.

[75]

H.Y. Li, R.Y. Gan, A. Shang, et al., Plant-based foods and their bioactive compounds on fatty liver disease: effects, mechanisms, and clinical application, Oxid. Med. Cell Longev. 2021 (2021) 6621644. https://doi.org/10.1155/2021/6621644.

[76]

A. Noce, M.D. Lauro, F.D. Daniele, et al., Natural bioactive compounds useful in clinical management of metabolic syndrome, Nutrients 13(2) (2021) 630. https://doi.org/10.3390/nu13020630.

[77]

A. Shang, R.Y. Gan, X.Y. Xu, et al., Effects and mechanisms of edible and medicinal plants on obesity: an updated review, Crit. Rev. Food Sci. Nutr. 61(12) (2020) 2061-2077. https://doi.org/10.1080/10408398.2020.1769548.

[78]

T. Yuk, Y. Kim, J. Yang, et al., Nobiletin inhibits hepatic lipogenesis via activation of AMP-activated protein kinase, Evid. Based. Complement Alternat. Med. 2018 (2018) 7420265. https://doi.org/10.1155/2018/7420265.

[79]

A. Sawamoto, M. Nakanishi, S. Okuyama, et al., Heptamethoxyflavone inhibits adipogenesis via enhancing PKA signaling, Eur. J. Pharmacol. 865(2019) 172758. https://doi.org/10.1016/j.ejphar.2019.172758.

[80]

G.J. Li, J. Wang, Y.J. Cheng, et al., Prophylactic effects of polymethoxyflavone-rich orange peel oil on Nω-nitro-L-arginine-induced hypertensive rats, Appl. Sci. 8(5) (2018) 752. https://doi.org/10.3390/app8050752.

[81]

J. Lee, E.H. Bae, S.K. Ma, et al., Altered nitric oxide system in cardiovascular and renal diseases, Chonnam. Med. J, 52(2) (2016) 81-90. https://doi.org/10.4068/cmj.2016.52.2.81.

[82]

M. Ochiai, T. Takeuchi, T. Nozaki, et al., Kaempferia parviflora ethanol extract, a peroxisome proliferator-activated receptor γ ligand-binding agonist, improves glucose tolerance and suppresses fat accumulation in diabetic NSY mice, J. Food Sci. 84(2) (2019) 339-348. https://doi.org/10.1111/1750-3841.14437.

[83]

S.L. Zeng, S.Z. Li, P.T. Xiao, et al., Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism, Sci. Adv. 6(1) (2020) eaax6208. https://doi.org/10.1126/sciadv.aax6208.

[84]

N.A. Parkar, L.K. Bhatt, V. Addepalli, Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats, Food Funct. 7(7) (2016) 3121-3129. https://doi.org/10.1039/c6fo00294c.

[85]

X. Cheng, Q. Li, J. Liu, et al., Nobiletin protects against monocrotalineinduced pulmonary arterial hypertension in rats by regulating Src/STAT3 signaling pathway, Int. J. Clin. Exp. Med. 10(7) (2017) 10342-10350.

[86]

N.M. Fayek, A.H. El-Shazly, A.R. Abdel-Monem, et al., Comparative study of the hypocholesterolemic, antidiabetic effects of four agro-waste Citrus peels cultivars and their HPLC standardization, Rev. Bras. Farmacogn. 27(4)(2017) 488-494. https://doi.org/10.1016/j.bjp.2017.01.010.

[87]

K.M. Youn, J. Lee, C.T. Ho, et al., Discovery of polymethoxyflavones from black ginger (Kaempferia parviflora) as potential β-secretase (BACE1) inhibitors, J. Funct. Foods. 20 (2016) 567-574. https://doi.org/10.1016/j.jff.2015.10.036.

[88]

S.D. Meriney, E.E. Fanselow, Acetylcholine, in: Synaptic Transmission, Academic Press, 2019, pp. 345-367.

DOI
[89]

I. Kawahata, T. Suzuki, E.G. Rico, et al., Fermented Citrus reticulata(ponkan) fruit squeezed draff that contains a large amount of 4'-demethylnobiletin prevents MK801-induced memory impairment, J. Nat. Med. 71(4) (2017) 617-631. https://doi.org/10.1007/s11418-017-1091-8.

[90]

S. Trivedi, P. Maurya, S.R. Sammi, et al., 5-Desmethylnobiletin augments synaptic ACh levels and nicotinic ACh receptor activity: a potential candidate for alleviation of cholinergic dysfunction, Neurosci. Lett. 657(2017) 84-90. https://doi.org/10.1016/j.neulet.2017.08.010.

[91]

A. Fatima, Y.H. Siddique, Role of tangeritin against cognitive impairments in transgenic drosophila model of Parkinson's disease, Neurosci. Lett. 705(2019) 112-117. https://doi.org/10.1016/j.neulet.2019.04.047.

[92]

S. Okuyama, K. Miyazaki, R. Yamada, et al., Permeation of polymethoxyflavones into the mouse brain and their effect on MK-801-induced locomotive hyperactivity, Int. J. Mol. Sci. 18(3) (2017) 489. https://doi.org/10.3390/ijms18030489.

[93]

A. Sawamoto, S. Okuyama, Y. Amakura, et al., 3,5,6,7,8,3',4'-Heptam ethoxyflavone ameliorates depressive-like behavior and hippocampal neurochemical changes in chronic unpredictable mild stressed mice by regulating the brain-derived neurotrophic factor: requirement for ERK activation, Int. J. Mol. Sci. 18(10) (2017) 2133. https://doi.org/10.3390/ijms18102133.

[94]

F. Wang, A. Ullah, X. Fan, et al., Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation. J Control Release. 333 (2021) 107-128. https://doi.org/10.1016/j.jconrel.2021.03.027.

[95]

A. Nakamoto, M. Mitani, K. Urayama, et al., Nobiletin enhances induction of antigen-specific immune responses in BALB/c mice immunized with ovalbumin, J. Nutr. Sci. Vitaminol 65(3) (2019) 278-282. https://doi.org/10.3177/jnsv.65.278.

[96]

M. Mitani, Y. Minatogawa, A. Nakamoto, et al., Sudachitin, polymethoxyflavone from Citrus sudachi, enhances antigen-specific cellular and humoral immune responses in BALB/c mice, J. Clin. Biochem. Nutr. 64(2) (2019) 158-163. https://doi.org/10.3164/jcbn.

[97]

M. Nakajima, M. Ogawa, Y. Amakura, et al., 3,5,6,7,8,3',4'-Heptamethoxyflavone reduces interleukin-4 production in the spleen cells of mice, Biomed. Res. 37(2) (2016) 95-99. https://doi.org/10.2220/biomedres.37.95.

[98]

Y. Hamada, M. Nakajima, K. Tsuzuki, et al., Heptamethoxyflavone reduces phosphodiesterase activity and T-cell growth in vitro, Int. Arch. Allergy Immunol. 174(3/4) (2017) 113-120. https://doi.org/10.1159/000481094.

[99]

N. Yoshizaki, T. Fujii, R. Hashizume, et al., A polymethoxyflavone mixture, extracted from orange peels, suppresses the UVB-induced expression of MMP-1, Exp. Dermatol. 25(3) (2016) 52-56. https://doi.org/10.1111/exd.13087.

[100]

G. Li, F. Tan, Q. Zhang, et al., Protective effects of polymethoxyflavonerich cold-pressed orange peel oil against ultraviolet B-induced photoaging on mouse skin, J. Funct. Foods 67 (2020) 103834. https://doi.org/10.1016/j.jff.2020.103834.

[101]

N. Yoshizaki, R. Hashizume, H. Masaki, A polymethoxyflavone mixture extracted from orange peels, mainly containing nobiletin, 3,3',4',5,6,7,8-heptamethoxyflavone and tangeretin, suppresses melanogenesis through the acidification of cell organelles, including melanosomes, J. Dermatol Sci. 88(1) (2017) 78-84. https://doi.org/10.1016/j.jdermsci.2017.06.008.

[102]

R.R.J. Arroo, S. Sari, B. Barut, et al., Flavones as tyrosinase inhibitors: kinetic studies in vitro and in silico, Phytochem. Anal. 31(3) (2020) 314-321. https://doi.org/10.1002/pca.2897.

[103]

S. Abe, K. Yuasa, Sudachitin, a polymethoxyflavone from Citrus sudachi, induces apoptosis via the regulation of MAPK pathways in human keratinocyte HaCaT cells, Biochem. Biophys. Res. Commun. 519(2) (2019) 344-350. https://doi.org/10.1016/j.bbrc.2019.09.010.

[104]

S. Abe, S. Hirose, M. Nishitani, et al., Citrus peel polymethoxyflavones, sudachitin and nobiletin, induce distinct cellular responses in human keratinocyte HaCaT cells, Biosci. Biotechnol Biochem. 82(12) (2018) 2064-2071. https://doi.org/10.1080/09168451.2018.1514246.

[105]

A. Ortuño, A. Báidez, P. Gómez, et al., Citrus paradisi and Citrus sinensis flavonoids: their influence in the defence mechanism against Penicillium digitatum, Food Chem. 98(2) (2006) 351-358. https://doi.org/10.1016/j.foodchem.2005.06.017.

[106]

A. Ortuño, M.C. Arcas, J.M. Botía, et al., Increasing resistance against Phytophthora citrophthora in tangelo Nova fruits by modulating polymethoxyflavones levels, J. Agric. Food Chem. 50(10) (2002) 2836-2839. https://doi.org/10.1021/jf011382a.

[107]

M. Nakanishi, M. Hino, M. Yoshimura, et al., Identification of sinensetin and nobiletin as major antitrypanosomal factors in a citrus cultivar, Exp. Parasitol. 200 (2019) 24-29. https://doi.org/10.1016/j.exppara.2019.03.008.

[108]

M. Miyazawa, Y. Okuno, M. Fukuyama, et al., Antimutagenic activity of polymethoxyflavonoids from Citrus aurantium, J. Agric. Food Chem. 47(12)(1999) 5239-5244. https://doi.org/10.1021/jf990176o.

[109]

S. Matsumoto, T. Tominari, C. Matsumoto, et al., Effects of polymethoxyflavonoids on bone loss induced by estrogen deficiency and by LPS-dependent inflammation in mice, Pharmaceuticals. 11(1) (2018) 7. https://doi.org/10.3390/ph11010007.

[110]

A. Aboul Naser, E. Younis, A. El-Feky, et al., Management of Citrus sinensis peels for protection and treatment against gastric ulcer induced by ethanol in rats, Biomarkers 25(4) (2020) 349-359. https://doi.org/10.1080/1354750X.2020.1759693.

[111]

X. Wen, H. Zhao, L. Wang, et al., Nobiletin attenuates DSS-induced intestinal barrier damage through the HNF4α-claudin-7 signaling pathway, J. Agric. Food Chem. 68(16) (2020) 4641-4649. https://doi.org/10.1021/acs.jafc.0c01217.

[112]

A. Shinozaki, K. Misawa, Y. Ikeda, et al., Potent effects of flavonoid nobiletin on amplitude, period, and phase of the circadian clock rhythm in PER2: : LUCIFERASE mouse embryonic fibroblasts, PLoS One 12(12)(2017) e0170904. https://doi.org/10.1371/journal.pone.0170904.

[113]

S. Horigome, M. Maeda, H.J. Ho, et al., Effect of Kaempferia parviflora extract and its polymethoxyflavonoid components on testosterone production in mouse testis-derived tumour cells, J. Funct. Foods 26 (2016) 529-538. https://doi.org/10.1016/j.jff.2016.08.008.

[114]

X Yang, H Wang, T Li, et al., Nobiletin delays aging and enhances stress resistance of Caenorhabditis elegans, Int. J. Mol. Sci. 21(1) (2020) 341. https://doi.org/10.3390/ijms21010341.

[115]

S. Reagan-Shaw, M. Nihal, N. Ahmad, et al., Dose translation from animal to human studies revisited, FASEB J. 22(3) (2008) 659-661. https://doi.org/0.1096/fj.07-9574LSF.

[116]

M.C. Arcas, J.M. Botía, A.M. Ortuño, et al., UV irradiation alters the levels of flavonoids involved in the defence mechanism of Citrus aurantium fruits against Penicillium digitatum, Eur. J. Plant Pathol. 106 (2000) 617-622. https://doi.org/10.1023/a:1008704102446.

[117]

T. Yasuda, Y. Yoshimura, H. Yabuki, et al., Urinary metabolites of nobiletin orally administered to rats, Chem. Pharm. Bull. 51(12) (2003) 1426-1428. https://doi.org/10.1248/cpb.51.1426.

[118]

Y.W. Ting, Y.K. Jiang, Y.Q. Lan, et al., Viscoelastic emulsion improved the bioaccessibility and oral bioavailability of crystalline compound: a mechanistic study using in vitro and in vivo models, Mol. Pharm. 12(7)(2015) 2229-2236. https://doi.org/10.1021/mp5007322.

[119]

A.M. Ortuño, M.C. Arcas, O. Benavente-García, et al., Evolution of polymethoxy flavones during development of tangelo Nova fruits, Food Chem. 66(2) (1999) 217-220. https://doi.org/10.1016/S0308-8146(99)00047-3.

[120]

B. Weber, B. Hartmann, D. Stöckigt, et al., Liquid chromatography/mass spectrometry and liquid chromatography/nuclear magnetic resonance as complementary analytical techniques for unambiguous identification of polymethoxylated flavones in residues from molecular distillation of orange peel oils (Citrus sinensis), J. Agric. Food Chem. 54(2) (2006) 274-278. https://doi.org/10.1021/jf051606f.

[121]

H.C. Ko, M.G. Jang, C.H. Kang, et al., Preparation of a polymethoxyflavonerich fraction (PRF) of Citrus sunki Hort. ex Tanaka and its antiproliferative effects, Food Chem. 123(2) (2010) 484-488. https://doi.org/10.1016/j.foodchem.2010.04.028.

[122]

S. Han, H.M. Kim, J.M. Lee, et al., Isolation and identification of polymethoxyflavones from the hybrid Citrus, hallabong, J. Agric. Food Chem. 58(17) (2010) 9488-9491. https://doi.org/10.1021/jf102730b.

[123]

S. Han, H.M. Kim, S. Lee, Simultaneous determination of polymethoxyflavones in Citrus species, Kiyomi tangor and Satsuma mandarin, by high performance liquid chromatography, Food Chem. 134(2)(2012) 1220-1224. https://doi.org/10.1016/j.foodchem.2012.02.187.

[124]

J. Chen, A.M. Montanari, Isolation and identification of new polymethoxyflavonoids from Dancy tangerine leaves, J. Agric. Food Chem. 46(4) (1998) 1235-1238. https://doi.org/10.1021/jf970606f.

[125]

N. Wongsrikaew, H. Kim, K. Vichitphan, et al., Antiproliferative activity and polymethoxyflavone composition analysis of Kaempferia parviflora extracts, J. Korean Soc. Appl. Biol. Chem. 55 (2012) 813-817. https://doi.org/10.1007/s13765-012-2175-5.

[126]

T. Kinoshita, K. Firman, Highly oxygenated flavonoids from Murraya paniculata, Phytochemistry 42(4) (1996) 1207-1210. https://doi.org/10.1016/0031-9422(96)00058-1.

[127]

S. A Nair, R.K. Sr, AS Nair, et al., Citrus peels prevent cancer, Phytomedicine 50 (2018) 231-237. https://doi.org/10.1016/j.phymed.2017.08.011.

[128]

C. Oba, M. Ota, K. Nomura, et al., Extraction of nobiletin from Citrus Unshiu peels by supercritical fluid and its CRE-mediated transcriptional activity, Phytomedicine 27 (2017) 33-38. https://doi.org/10.1016/j.phymed.2017.01.014.

[129]

H. Ihara, H. Yamamoto, T. Ida, et al., Inhibition of nitric oxide production and inducible nitric oxide synthase expression by a polymethoxyflavone from young fruits of Citrus unshiu in rat primary astrocytes, Biosci. Biotechnol Biochem. 76(10) (2012) 1843-1848. https://doi.org/10.1271/bbb.120215.

[130]

N.M. Fayek, M.A. Farag, A.R. Abdel Monem, et al., Comparative metabolite profiling of four Citrus peel spectrometry and multivariate data analyses, J. Chromatogr. Sci. 57(4) (2019) 349-360. https://doi.org/10.1093/chromsci/bmz006.

[131]

M. Hidaka, K. Horikawa, T. Akase, et al., Efficacy of Kaempferia parviflora in a mouse model of obesity-induced dermatopathy, J. Nat. Med. 71(1) (2017) 59-67. https://doi.org/10.1007/s11418-016-1027-8.

[132]

T. Horikawa, T. Shimada, Y. Okabe, et al., Polymethoxyflavonoids from Kaempferia parviflora induce adipogenesis on 3T3-L1 preadipocytes by regulating transcription factors at an early stage of differentiation, Biol. Pharm. Bull. 35(5) (2012) 686-692. https://doi.org/10.1248/bpb.35.686.

[133]

Y.L. Shih, J. Chou, M.Y. Yeh, et al., Casticin induces DNA damage and inhibits DNA repair-associated protein expression in B16F10 mouse melanoma cancer cells, Oncol Rep. 36(4) (2016) 2094-2100. https://doi.org/10.3892/or.2016.5027.

[134]

F. Ning, X. Wang, H. Zheng, et al., Improving the bioaccessibility and in vitro absorption of 5-demethylnobiletin from chenpi by se-enriched peanut protein nanoparticles-stabilized pickering emulsion, J. Funct. Foods 55(2019) 76-85. https://doi.org/10.1016/j.jff.2019.02.019.

[135]

H. Sagara, M. Kanakogi, Y. Tara, et al., Concise synthesis of polymethoxyflavone sudachitin and its derivatives, and biological evaluations, Tetrahedron Lett. 59(19) (2018) 1816-1818. https://doi.org/10.1016/j.tetlet.2018.03.064.

[136]

Y. Nii, Y. Shikishima, T. Sakai, Improvement of lipid metabolism in mice fed a high-fat diet treated with sudachitin and development of sudachi peel extract powder, Nippon Shokuhin Kagaku Kogaku Kaishi 66 (7) (2019) 233-237.

File
fshw-2024-9250003_ESM.pdf (188.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 March 2022
Revised: 12 May 2022
Accepted: 20 June 2022
Published: 01 June 2023
Issue date: January 2024

Copyright

© 2024 Beijing Academy of Food Sciences. Publishing services by Tsinghua University Press.

Acknowledgements

This work was supported by the Local Financial Funds of National Agricultural Science and Technology Center, Chengdu, China (NASC2021KR01) and the Agricultural Science and Technology Innovation Program (ASTIP-IUA-2022002).

Rights and permissions

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return