Communications - Scientific Letters of the University of Zilina 2023, 25(3):D54-D70 | DOI: 10.26552/com.C.2023.043

Strength Characteristics of Fe-SMA Reinforcement in RC Beam with Experimentation and Finite Element Modeling

Priyanka Jadhav ORCID...1, Archana Gite2, Rajan L. Wankhade ORCID...3,*
1 Department of Civil Engineering, Terna Engineering College Nerul, Navi Mumbai, Maharashtra, India
2 Department of Civil Engineering, Saraswati College of Engineering, Maharashtra, India
3 Department of Civil Engineering, Netaji Subhas University of Technology, New Delhi, India

The work presented here aims at investigating the feasibility of iron-based Fe-SMA (shape memory alloy) reinforcement as an alternative to conventional steel reinforcement. The conventional steel reinforcement shows large plastic strain, low resistance to corrosion, low resistance to fatigue and also inadequate recentering capability. As a result, advanced materials available in the form of superelastic (SE) shape memory alloy (SMA) are fabricated to form structural reinforcements. This FE-SMA mitigates the problem of long-lasting deflection by using its reversible stress-strain capability. This iron-based Fe-SMA may be stimulated between the temperatures of 90 to 150°C, with which it is possible to strengthen the reinforced concrete (RC) beams without any crucial damage. The stress-strain behavior in tension, corrosion resistivity, pull-out tests of Fe-SMA reinforcement and flexural strength of RC beam were evaluated experimentally. The FE-SMA exhibits recovery stresses of 250-300 MPa subjected to a temperature of 160°C. A comparison of load-carrying capacity of iron-based Fe-SMA reinforcement is also shown.

Keywords: Fe-SMA, RC beam, flexural strength, stress-strain relationship
Grants and funding:

The authors received no financial support for the research, authorship and/or publication of this article.

Conflicts of interest:

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received: December 9, 2022; Accepted: February 28, 2023; Prepublished online: April 12, 2023; Published: July 11, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Jadhav, P., Gite, A., & Wankhade, R.L. (2023). Strength Characteristics of Fe-SMA Reinforcement in RC Beam with Experimentation and Finite Element Modeling. Communications - Scientific Letters of the University of Zilina25(3), D54-70. doi: 10.26552/com.C.2023.043
Download citation

References

  1. SATO, A., CHISHIMA, E., SOMA, K., MORI, T. Shape memory effect in y transformation in Fe-30Mn-1Si alloy single crystals. Acta Metallurgica [online]. 1982, 30(6), p. 1177-1183. ISSN 0001-6160. Available from: https://doi.org/10.1016/0001-6160(82)90011-6 Go to original source...
  2. OTSUKA, H. Fe-Mn-Si based shape memory alloys. MRS Online Proceedings Library [online]. 1991, 246(1), p. 309-320. eISSN 1946-4274. Available from: https://doi.org/10.1557/PROC-246-309 Go to original source...
  3. DUERIG, T. W., PELTON, A. R. Ti-Ni shape memory alloys. In: Materials properties handbook: titanium alloys. WELSCH, G., BOYER, R., COLLINGS, E. W. (eds.). American Society for Metals, 1994. ISBN 0-87170-481-1, p. 1035-1048.
  4. CROCI, G., BONCI, A., VISKOVIC, A. Use of shape memory alloy devices in the basilica of St Francis of Assisi. In: Final Workshop of ISTECH Project - Shape Memory Alloy Devices for Seismic Protection of Cultural Heritage Structures: proceedings. 2000. p. 110-113.
  5. INDIRLI, M., CASTELLANO, M. G., CLEMENTE, P., MARTELLI, A. Demo-application of shape memory alloy devices: the rehabilitation of the S. Giorgio Church Bell-Tower. In: SPIE's 8th Annual International Symposium on Smart Structures and Materials: proceedings [online]. Vol. 4330. 2001. p. 262-272. Available from: https://doi.org/10.1117/12.434126 Go to original source...
  6. MAZZOLANI, F. M., MANDARA, A. Modern trends in the use of special metals for the improvement of historical and monumental structures. Engineering Structures [online]. 2002, 24(7), p. 843-856. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/S0141-0296(02)00023-8 Go to original source...
  7. SONG, G., MO, Y. L., Increasing concrete structural survivability using smart materials. A proposal submitted to Grants to Enhance and Advance Research (GEAR). Houston: University of Houston, 2003.
  8. FUKUTA, T., IIBA, M., KITAGAWA, Y., SAKAI, Y. Experimental study on stress-strain property of shape memory alloy and its application to self-restoration of structural members. In: 13th World Conference on Earthquake Engineering: proceedings. 2004. Paper No. 610.
  9. LI, H., LIU, M., OU, J. Vibration mitigation of a stay cable with one shape memory alloy damper. Structural Control and Health Monitoring [online]. 2004, 11(1), p. 1-36. eISSN 1545-2263. Available from: https://doi.org/10.1002/stc.29 Go to original source...
  10. JANKE, L., CZADERSKI, C., MOTAVALLI, M., RUTH, J. Applications of shape memory alloys in civil engineering structures - overview, limits and new ideas. Materials and Structures [online]. 2005, 38, p. 578-592. ISSN 1359-5997, eISSN 1871-6873. Available from: https://doi.org/10.1007/BF02479550 Go to original source...
  11. SONG, G., MA, N., LI, H.-N. Applications of shape memory alloys in civil structures. Engineering Structures [online]. 2006, 28(9), p. 1266-1274. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2005.12.010 Go to original source...
  12. ALAM, M. S., YOUSSEF, M. A., NEHDI, M. Analytical prediction of the seismic behaviour of super elastic shape memory alloy reinforced concrete elements. Engineering Structures [online]. 2008, 30(12), p. 3399-3411. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2008.05.025 Go to original source...
  13. EL-BORGI, S., NEIFAR, M., BEN JABEUR, M., CHERIF, D., SMAOUI, H. Use of copper shape memory alloys in retrofitting historical monuments. Smart Structures and Systems [online]. 2008, 4(2), p. 247-259. ISSN 1738-1584, eISSN 1738-1991. Available from: https://doi.org/10.12989/sss.2008.4.2.247 Go to original source...
  14. INDIRLI, M., CASTELLANO, M. Shape memory alloy devices for the structural improvement of masonry heritage structures. International Journal of Architectural Heritage [online]. 2008, 2(2), p. 93-119. ISSN 1558-3058, eISSN 1558-3066. Available from: https://doi.org/10.1080/15583050701636258 Go to original source...
  15. KUMAR, P. K., LAGOUDAS, D. C. Introduction to shape memory alloys. In: Shape memory alloys modeling and engineering applications [online]. LAGOUDAS, D. C. (ed.). New York, NY: Springer, 2008. ISBN 978-0-387-47684-1, eISBN 978-0-387-47685-8, p. 1-51. Available from: https://doi.org/10.1007/978-0-387-47685-8 Go to original source...
  16. MARUYAMA, T., KURITA, T., KOZAKI, S., ANDOU, K., FARJAMI, S., KUBO, H. Innovation in producing crane rail fishplate using Fe-Mn-Si-Cr based shape memory alloy. Materials Science and Technology [online]. 2008, 24(8), p. 908-912. ISSN 0267-0836, eISSN 1743-2847. Available from: https://doi.org/10.1179/174328408X302585 Go to original source...
  17. KUANG. Y.-CH., OU, J.-P. Passive smart self-repairing concrete beams by using shape memory alloy wires and fibers containing adhesives. Journal of Central South University of Technology [online]. 2008, 15, p. 411-417. ISSN 2095-2899, eISSN 2227-5223. Available from: https://doi.org/10.1007/s11771-008-0077-9 Go to original source...
  18. NASCIMENTO, M. M. S. F., DE ARAUJO, C. J., DE ALMEIDA, L. A. L., DA ROCHA NETO, J. S., LIMA, A. M. N. A mathematical model for the strain -temperature hysteresis of shape memory alloy actuators. Materials and Design [online]. 2009, 30(3), p. 551-556. ISSN 0261-3069. Available from: https://doi.org/10.1016/j.matdes.2008.05.062 Go to original source...
  19. ALSALEH, R., CASCIATI, F., EL-ATTAR, A. AND EI-HABBAL, I. M., Experimental investigation toward an SMA retrofitting application. In: 5th European Workshop on Structural Health Monitoring: proceedings. 2010. ISBN 978-1605950242, p. 1116-1123.
  20. KHALOO, A. R., ESHGHI, I., PIRAN, P. Study of behavior of reinforced concrete beams with smart rebar using finite element modeling. International Journal of Civil Engineering [online]. 2010, 8(3), p. 221-231. ISSN 1735-0522. Available from: http://ijce.iust.ac.ir/article-1-166-en.html
  21. NEHDI, M., SHAHRIA ALAM, M., YOUSSEF, M. A. Development of corrosion-free concrete beam column joint with adequate seismic energy dissipation. Engineering Structures [online]. 2010, 32, p. 2518-2528. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2010.04.020 Go to original source...
  22. MARUYAMA, T., KUBO, H., OHKATA, I., TSUCHIYA, K., MIYAZAKI, S. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications. Cambridge: Woodhead Publishing Limited, 2011. p. 141-159. Go to original source...
  23. SPEICHER, M. S., DESROCHES, R., LEON, R. T. Experimental results of a NiTi shape memory alloy (SMA)-based recentering beam-column connection. Engineering Structures [online]. 2011, 33(9), p. 2448-2457. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2011.04.018 Go to original source...
  24. OZBULUT, O. E., HURLEBAUS, S., DESROCHES, R. Seismic response control using shape memory alloys: a review. Journal of Intelligent Material Systems and Structures [online]. 2011, 22(14), p. 1531-1549. ISSN 1045-389X, eISSN 1530-8138. Available from: https://doi.org/10.1177/1045389X11411 Go to original source...
  25. PAUL, N. K., SAHA, S. Improvement of load-carrying capacity of a RCC t-beam bridge longitudinal girder by replacing steel bars with SMA Bars. International Journal of Civil and Environmental Engineering. 2017, 11(7), p. 1008-1012. ISSN 2227-2763, eISSN 2077-1258.
  26. ABDULRIDHA, A., PALERMO, D., FOO, S., VECCHIO, F. J. Behavior and modeling of superelastic shape memory alloy reinforced concrete beams. Engineering Structures [online]. 2012, 49, p. 893-904. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2012.12.041 Go to original source...
  27. SHAHRIA ALAM, M., MONI, M., TESFAMARIAM, S. Seismic over strength and ductility of concrete buildings reinforced with superelastic shape memory alloy rebar. Engineering Structures [online]. 2012, 34, p. 8-20. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2011.08.030 Go to original source...
  28. MUNTASIR BILLAH, A. H. M., SHAHRIA ALAM, M. Seismic performance of concrete columns reinforced with hybrid shape memory alloy (SMA) and fiber Reinforced polymer (FRP) bars. Construction and Building Materials [online]. 2012, 28(1), p. 730-742. ISSN 0950-0618, eISSN 1879-0526. Available from: https://doi.org/10.1016/j.conbuildmat.2011.10.020 Go to original source...
  29. CHOI, E., PARK, S.-H., CHO, B.-S., HUI, D. Lateral reinforcement of welded SMA rings for reinforced concrete columns. Journal of Alloys and Compounds [online]. 2013, 577(S1), p. S756-S759. ISSN 0925-8388, eISSN 1873-4669. Available from: https://doi.org/10.1016/j.jallcom.2012.02.135 Go to original source...
  30. ZAFAR, A., ANDRAWES, B. Seismic behavior of shape memory composite bars in RC moment frames. In: 15th World Conference on Earthquake Engineering: proceedings. 2012.
  31. BAJORIA, K. M., WANKHADE, R. L. Free vibration of simply supported piezolaminated composite plates using finite element method. Advanced Materials Research [online]. 2012, 587, p 52-56. ISSN 1662-8985. Available from: https://doi.org/10.4028/www.scientific.net/AMR.587.52 Go to original source...
  32. WANKHADE, R. L., BAJORIA, K. M. Stability of simply supported smart piezolaminated composite plates using finite element method. In: International Conference on Advances in Aeronautical and Mechanical Engineering - AME 2012: proceedings. Vol. 1. 2012. ISBN 978-981-07-2683-6, p. 14-19.
  33. WANKHADE, R. L., BAJORIA, K. M. Free vibration and stability analysis of piezolaminated plates using finite element method. Smart Materials and Structures [online]. 2013, 22(12), 125040. ISSN 0964-1726, eISSN 1361-665X. Available from: https://doi.org/10.1088/0964-1726/22/12/125040 Go to original source...
  34. WANKHADE, R. L., BAJORIA, K. M. Buckling analysis of piezolaminated plates using higher order shear deformation theory. International Journal of Composite Materials [online]. 2013, 3(4), p. 92-99. ISSN 2166-479X, eISSN 2166-4919. Available from: https://doi.org/10.5923/j.cmaterials.20130304.02 Go to original source...
  35. JALAEEFAR, A., ASGARIAN, B. Experimental investigation of mechanical properties of nitinol, structural steel and their hybrid component. Journal of Materials in Civil Engineering [online]. 2013, 25(10), p. 1498-1505. ISSN 0899-1561, eISSN 1943-5533. Available from: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000701 Go to original source...
  36. NAZIM, O.-B., BOUZID, A.-H., BRAILOVSKI, V. On the use of shape memory alloy studs to recover load loss in bolted joints. Journal Pressure Vessel Technology [online]. 2013, 135(2), PVT-11-1178. ISSN 0094-9930, eISSN 1528-8978. Available from: https://doi.org/10.1115/1.4023416 Go to original source...
  37. CLADERA, A., WEBER, B., LEINENBACH, C., CZADERSKI, C., SHAHVERDI, M., MOTAVALLI, M. Iron-based shape memory alloys for civil engineering structures: an overview. Construction and Building Materials [online]. 2014, 63, p. 281-293. ISSN 0950-0618, eISSN 1879-0526. Available from: https://doi.org/10.1016/j.conbuildmat.2014.04.032 Go to original source...
  38. CZADERSKI, C., SHAHVERDI, M., BRONNIMANN, R., LEINENBACH, C., MOTAVALLI, M. Feasibility of iron-based shape memory alloy strips for prestressed strengthening of concrete structures. Construction and Building Materials [online]. 2014, 56, p. 94-105. ISSN 0950-0618, eISSN 1879-0526. Available from: https://doi.org/10.1016/j.conbuildmat.2014.01.069 Go to original source...
  39. SEPULVEDA, J., BOROSCHEK, R., HERRERA, R., MORONI, O., SARRAZIN, M. Steel beam -column connection using copper-based shape memory alloy dampers. Journal of Constructional Steel Research [online]. 2008, 64(4), p. 429-435. ISSN 0143-974X, eISSN 1873-5983. Available from: https://doi.org/10.1016/j.jcsr.2007.09.002 Go to original source...
  40. MALAGISI, S., MARFIA, S., SACCO, E., TOTI, J. Modeling of smart concrete beams with shape memory alloy actuators. Engineering Structures [online]. 2014, 75, p. 63-72. ISSN 0141-0296, eISSN 1873-7323. Available from: https://doi.org/10.1016/j.engstruct.2014.05.035 Go to original source...
  41. CZADERSKI, CH., SHAHVERDI, M., MOTAVALLI, M., WEBER, B. Iron-based shape memory alloys (Fe-SMA) - a new material for prestressing concrete structure. In: 3rd Conference on Smart Monitoring, Assessment and Rehabilitation of Structures SMAR 2015: proceedings. 2015.
  42. BAJORIA, K. M., WANKHADE, R. L. Vibration of cantilever piezolaminated beam with extension and shear mode piezo actuators. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring: proceedings. Vol. 9431. 2015. 943122. Available from: https://doi.org/10.1117/12.2084271 Go to original source...
  43. WANKHADE, R. L., BENDINE, K. Vibration control of FGM piezoelectric plate based on LQR genetic search. Open Journal of Civil Engineering [online]. 2016, 6(1), p. 1-7. ISSN 2164-3164, eISSN 2164-3172. Available from: https://doi.org/10.4236/ojce.2016.61001 Go to original source...
  44. WANKHADE, R. L., BAJORIA, K. M. Shape control and vibration analysis of piezolaminated plates subjected to electro-mechanical loading. Open Journal of Civil Engineering [online]. 2016, 6(3), p. 335-345. ISSN 2164-3164, eISSN 2164-3172. Available from: https://doi.org/10.4236/ojce.2016.63028 Go to original source...
  45. NAGASHIMA, N., SAWAGUCHI, T., OGAWA, K. Fatigue properties of Fe-28Mn-6Si-5Cr-0.5Nbc alloy. Procedia Structural Integrity [online]. 2016, 2, p. 1435-1442. eISSN 2452-3216. Available from: https://doi.org/10.1016/j.prostr.2016.06.182 Go to original source...
  46. WANKHADE, R. L., BAJORIA, K. M. Numerical optimization of piezolaminated beams under static and dynamic excitations. Journal of Science: Advanced Materials and Devices [online]. 2017, 2(2), p. 255-262. ISSN 2468-2284, eISSN 2468-2179. Available from: https://doi.org/10.1016/j.jsamd.2017.03.002 Go to original source...
  47. BENDINE, K., WANKHADE, R. L. Optimal shape control of piezolaminated beams with different boundary condition and loading using genetic algorithm. International Journal of Advanced Structural Engineering [online]. 2017, 9(4), p. 375-384. ISSN 2008-3556, eISSN 2008-6695. Available from: https://doi.org/10.1007/s40091-017-0173-x Go to original source...
  48. WANKHADE, R. L., BAJORIA, K. M. Vibration analysis of piezolaminated plates for sensing and actuating applications under dynamic excitation. International Journal of Structural Stability and Dynamics [online]. 2019, 19(10), 1950121. ISSN 0219-4554, eISSN 1793-6764. Available from: https://doi.org/10.1142/S0219455419501219 Go to original source...
  49. WANKHADE, R. L., BAJORIA, K. M. Vibration attenuation and dynamic control of piezolaminated plates with coupled electromechanical actuation. Archive of Applied Mechanics [online]. 2021, 91, p. 411-426. ISSN 0939-1533, eISSN 1432-0681. Available from: https://doi.org/10.1007/s00419-020-01780-6 Go to original source...
  50. IS 383: 1970. Specification for coarse and fine aggregates from natural sources for concrete.
  51. IS 11309: 1985. Method of conducting pull-out test on anchor bars and rock bolts.
  52. IS 9879: 1998. Method for emission spectrometric analysis of austenitic and ferritic stainless steels point to plane technique.
  53. IS 9103: 1999. Concrete admixtures-specifications.
  54. IS 1786: 2008. Indian standard code for high strength deformed steel bars and wires for concrete reinforcement.
  55. IS 10262: 2009. Concrete mix proportioning-guidelines.
  56. ASTM B117: 2011. Test conditions, method and application.
  57. IS 12269: 2013. Ordinary portland cement. 53 grade-specifications.
  58. IS 516 (Part-1 Sec-I): 2021. Compressive, flexural and split tensile strength.
  59. ASTM A370: 2021. Standard test methods and definitions for mechanical testing of steel products.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.