Abstract

Bioelectrical impedance analysis (BIA) is a simple, non-invasive technique to determine body composition. The fundamental principle of determining body composition via bioelectrical impedance is to determine the resistance to, or conductance of, a low voltage current applied to biological tissue. Bioelectrical impedance analysis is well correlated to total body water. Bioelectrical impedance is sensitive to fluid shifts namely changes in blood flow, changes in electrolyte concentration, and changes in hydration status and consequently bioelectrical impedance has been used as a tool to measure such changes. Thirty college-aged students, 18-25 years old, 18 men and 12 women were subjects for this study. Bioelectrical impedance was determined with the Tanita BC-418 at two time points. Subjects were instructed to drink 490ml of water then exercised on the treadmill for 30mins. Our results show a significant decrease in resistance in both the sum of the upper limbs and the sum of the lower limbs indicating a fluid shift that is related to the fluid consumed by the subjects, but independent of tonicity.

Keywords

Body Composition, Hydration Status, Fitness,

References

  1. R.N. Baumgartner, S.B. Heymsfield, & A. F. Roche, Human body composition and the epidemiology of chronic disease, Obesity, 3(1) (1995) 73-95.
  2. C. Do Lee, S.N. Blair, & A.S. Jackson, Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men, The American Journal of Clinical Nutrition, 69 (1999) 373-380.
  3. A.M. Schols, R. Broekhuizen, C.A. Weling-Scheepers, & E.F. Wouters, Body composition and mortality in chronic obstructive pulmonary disease, The American Journal of Clinical Nutrition, 82 (2005), 53-59.
  4. A.S. Jackson, M.L. Pollock, J.E. Graves & M.T. Mahar, Reliability and validity of bioelectrical impedance in determining body composition, Journal of Applied Physiology, 64 (1988) 529-534.
  5. I. Janssen, S.B. Heymsfield, R.N. Baumgartner, & R. Ross, Estimation of skeletal muscle mass by bioelectrical impedance analysis, Journal of Applied Physiology, 89 (2)(2000) 465-471.
  6. U.G. Kyle, I. Bosaeus, A.D. De Lorenzo, P. Deurenberg, M. Elia, J.M. Gómez & H. Scharfetter, Bioelectrical impedance analysis--part I: review of principles and methods, Clinical Nutrition, 23 (2004) 1226- 1243.
  7. D. Bracco, J.P. Revelly, M.M. Berger, & R.L. Chiolero, Bedside determination of fluid accumulation after cardiac surgery using segmental bioelectrical impedance, Critical Care Medicine, 26 (1998) 1065-1070.
  8. D.P. Kotler, S. Burastero, J.R.N.P. Wang, & R.N. Pierson, Prediction of body cell mass, fat-free mass, and total body water with bioelectrical impedance analysis: effects of race, sex, and disease, The American Journal of Clinical Nutrition, 64 (1996) 489S-497S.
  9. M.C. Zillikens, J.W. Van den Berg, J.H. Wilson, & G.R. Swart, Wholebody and segmental bioelectrical-impedance analysis in patients with cirrhosis of the liver: changes after treatment of ascites, The American Journal of Clinical Nutrition, 55 (1992) 621-625.
  10. D. Bracco, D. Thiébaud, R. L. Chioléro, M. Landry, P. Burckhardt, & Y. Schutz, Segmental body composition assessed by bioelectrical impedance analysis and DEXA in humans, Journal of Applied Physiology, 81 (1996) 2580-2587.
  11. M. Dehghan, & A. T. Merchant, Is bioelectrical impedance accurate for use in large epidemiological studies? Nutrition Journal, 7 (2008), 26.
  12. K.J. Shafer, W.A. Siders, L.K. Johnson, & H.C. Lukaski, Validity of segmental multiple-frequency bioelectrical impedance analysis to estimate body composition of adults across a range of body mass indexes, Nutrition, 25 (2009), 25-32.
  13. H.C. Lukaski, W.W. Bolonchuk, C.B. Hall, & W A. Siders, Validation of tetrapolar bioelectrical impedance method to assess human body composition, Journal of Applied Physiology, 60 (1986) 1327-1332.
  14. L.W. Organ, G.B. Bradham, D.T. Gore, & S.L. Lozier, Segmental bioelectrical impedance analysis: theory and application of a new technique, Journal of Applied Physiology, 77 (1994) 98-112.
  15. L.E. Armstrong, R.W. Kenefick ,J. W. Castellani , D. Riebe, S.A. Kavouras, J.T. Kuznicki, C.M. Maresh, Bioimpedance spectroscopy technique: intra-, extracellular, and total body water, Medicine & Science in Sports and Exercise 29 (1997) 1657-1663.
  16. W.C. Chumlea, R.N. Baumgartner, & A.F. Roche, Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectric impedance, The American Journal of Clinical Nutrition, 48 (1988) 7-15.
  17. Kushner, F. Robert and Dale A. Schoeller, Estimation of total body water by bioelectrical impedance analysis, The American Journal of Clinical Nutrition 44 (1986) 417-424.
  18. K.R. Segal, S. Burastero, A. Chun, P. Coronel, R. N. Pierson, & J. Wang, Estimation of extracellular and total body water by multiplefrequency bioelectrical-impedance measurement, The American Journal of Clinical Nutrition, 54 (1991) 26-29.
  19. M.R Scheltinga, D.O Jacobs, T.D. Kimbrough , D.W. Wilmore, Alterations in body fluid content can be detected by bioelectrical impedance analysis, Journal of Surgical Research, 50 (1986) 461-468.
  20. D.L. Costill, R. Cote, W.J. Fink, & P. Van Handel, Muscle water and electrolyte distribution during prolonged excrcise, International Journal of Sports Medicine, 2 (1981) 130-134.
  21. American College of Sports Medicine. ACSM's Guidelines for Exercise Testing and Prescription, 9th ed., L.S. Pescatello, Ed. Baltimore (MD): Lippincott Williams & Wilkins; 2014.
  22. T.D. Gomez, P.A. Mole, A. Collins, Dilution of body fluid electrolytes affects bioelectrical impedance measurements, Sports Medicine Training and Rehabilitation, 4 (1993) 291-298.
  23. C. O'Brien, C .J. Baker-Fulco, A .J. Young , M.N. Sawka, Bioimpedance assessment of hypohydration, Medicine & Science in Sports and Exercise, 31 (1999) 1466-1471.
  24. C. O'brien, A.J. Young, & M.N. Sawka, Bioelectrical Impedance to Estimate Changes in Hydration Status, International Journal of Sports Medicine, 23 (2002) 361-366.
  25. M.J. Saunders, J.E. Blevins, C. E. Broeder, Effects of hydration changes on bioelectrical impedance in endurance trained individuals, Medicine & Science in Sports and Exercise 30 (1998) 885-892.
  26. G. Walther, S. Nottin, L. Karpoff, A. Pérez-Martin, M. Dauzat, & P. Obert, Flow-mediated dilation and exercise-induced hyperaemia in highly trained athletes: comparison of the upper and lower limb vasculature, Acta Physiologica, 193 (2008) 139-150.
  27. B.D. Hoelting, B.W. Scheuermann, & T.J. Barstow, Effect of contraction frequency on leg blood flow during knee extension exercise in humans, Journal of Applied Physiology, 91(2001) 671-679.
  28. R. Palma, N. Vidon, J.J. Bernier, Maximal capacity for fluid absorption in human bowel, Digestive Diseases and Sciences. 26 (1981) 929-934.
  29. T.D. Noakes, K. Sharwood, D. Speedy, Proceedings of the National Academy of Sciences 102 (2005) 18550-18555. 30. T.P. Backes, P.J. Horvath, & K.A. Kazial, Salivary alpha amylase and salivary cortisol response to fluid consumption in exercising athletes, Journal of Human Sport and Exercise, 10 (2015) 275-280 31. T.P. Backes, & K. Fitzgerald, Fluid consumption, exercise, and cognitive performance, Biology of Sport, 33 (2016) 291-296.