
Solving multi-depot vehicle routing problem
with particle swarm optimization

Matic Pintarič
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

matic.pintaric@student.um.si

Sašo Karakatič
University of Maribor, Faculty
of Electrical Engineering and

Computer Science
Koroška cesta 46
Maribor, Slovenia

saso.karakatic@um.si

ABSTRACT
Multi-depot vehicle routing problem (MDVRP) is an optimization
problem with practical real-world applications in the commercial
transportation sector. It deals with the optimization of the time
and cost of the transportation of goods from and to customers

from numerous predefined serving depots. The multi-depot variant
adds constraints of multiple serving depots and variable customer
serving capacity and is a NP hard problem. In this paper, we
present an application of Particle Swarm Optimization (PSO) for
continuous optimization to MDVRP, where nature-inspired
optimization framework NiaPy is used. As MDVRP is a discreet
optimization problem, but NiaPy is suited to work only with
continuous optimization problems, a transformation with the
repairing mechanism must be used. Our proposed approach is

presented in detail and is tested on several standard MDVRP
benchmark sets to provide a sufficient evidence of usability of the
approach.

Keywords
Multi-depot Vehicle Routing Problem, Continuous optimization,

Particle Swarm Optimization

1. INTRODUCTION
Optimization is a daily problem we face with in an increasing
number of different logistics services, such as for example mail
delivery, passenger transportation and other transportation of

goods [1], [2], [4]. Because solving such problems is - due to
restrictions on the route often quite difficult, we mostly rely on
computer intelligence. By this we mean different algorithms that
have some heuristics rules, which result in good solutions. They
are classified as metaheuristic algorithms and often also referred
to as nature-inspired or evolutionary algorithms (EA) [6], [9].

In order to execute the experiment of a comparison between
different EA, we firstly developed a system that allows

application of any EA to the vehicle routing problem (VRP). Then
we tackled the VRP using five different evolutionary algorithms,
which are genetic algorithm (GA), evolution strategy (ES),
differential evolution (DE), particle swarm optimization (PSO)
and harmony search (HS). Considering the obtained results, we
decided to pay more attention to the PSO algorithm.

PSO is a popular algorithm for solving many complex
optimization problems, including routing problems. In 2008

Mohemmed et al. [16] used PSO for simple routing problem with
custom priority-based encoding and heuristic operator to prevent
loops in the path construction. Next in 2009, Ai and
Kachitvichyanukul [17] presented PSO with multiple social
structures to solve VRP with simultaneous pickup and delivery.

Yao et al. [18] proposed custom particle swarm optimization
algorithm for carton heterogeneous vehicle routing problem.
Kumar et al. [19] proposed a PSO for vehicle routing problem
with time window constraint. More recently, Norouzi et al. [20]
extended VRP with time window problem with additional fuel
consumption constraint and solved the problem also with PSO.
All these approaches treat routing problem as a discreet problem.
As we used optimization framework, which only works with
continuous optimization problem, the approaches from the

referenced papers could not be used and a transformation was
necessary.

The remaining of the paper is structured as follows. Second
section presents and formulates MDVRP and PSO. Next section
presents our proposed approach and its implementation with
NiaPy framework. Fourth section presents the results of the
experiment of the proposed approach on the standard benchmark
sets. Last section discusses the results of the experiments and

finishes with the concluding remarks.

2. SOLVING MDVRP
Logistic companies and other carriers, tasked with transporting or
picking up shipments, face with route optimization on a daily
level. The well-optimized route, taken by their fleets of vehicles,

means saving fuel and thus reducing overall daily cost. From this
we can see that similar scenarios are present in in everyday life
and present a problem worth solving well.

The described problem is called VRP and was first addressed by
George Dantzig and John Ramser in 1959, as a solution to
optimize fuel delivery. It is a NP hard combinatorial optimization
problem, generalized from travelling salesman problem, so there
is no polynomial time solution known to it [1], [3]. The result of

the problem is the optimal set of routes for multiple vehicles,
transporting goods to or from customers, subject to restrictions
along the routes. We also need to keep in mind that only one
vehicle can visit specific customer at a time [1], [7].

Over time, different classifications of the problem have formed
due to differences in constraints. The most common versions of
the problem are VRP with capacity constraints (CVRP), multi-
depot VRP (MDVRP) and VRP with time windows constraints

(VRPTW). In addition, just about every problem classification
also has a certain distance limit of the individual vehicle [1], [4].

We focused on solving MDVRP classification of the problem,
which is also less frequently referred to as multi-depot capacitated
vehicle routing problem (MDCVRP) [4]. The version of the
problem, in addition to multiple customers, consists of multiple
depots and thus more predefined vehicles - each vehicle can carry

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

53DOI: https://doi.org/10.26493/978-961-7055-82-5.53-56

a certain payload, travel a certain distance and must eventually
return to its starting depot [3], [11]. If any of the restrictions is
violated, penalty function is used to punish the vehicle with a
certain mark-up value. Because MDVRP is represented as a
directed graph, every node of customer and depot has its own x

and y coordinate pair [4], [5]. When looking for a solution to the
problem, we usually divide it into three phases, collectively
referred to as decision making or decision hierarchy in MDVRP.
We call them the merging phase, the routing phase and the
scheduling phase. In the first phase, we try to allocate customers
to the individual depots according to the distance, which is present
between them. The second phase, with previously divided
customers, draws up several routes, which vehicles will take.

After that, each path is sequenced in the third phase [3], [11].

Figure 1 is an example of MDVRP problem, where letters A and
B represent depots or vehicles with a maximum capacity of 10
units of weight, and circles with numbers represent different
customers. There are four paths between depots and customers,
based on genotype numbers that are converted to phenotype
numbers by the first conversion method. The routes were
determined according to the previously mentioned MDVRPs

decision hierarchy.

2.1 Particle Swarm Optimization for MDVRP
The system we developed for experiment purposes, supports

importing any EA from the library or microframework called
NiaPy. It was developed by researches from the Faculty of
Electrical Engineering and Computer Science and the Faculty of
Economics and Business from University of Maribor. Main
purpose for developing the framework was lack of easy and fast
use of EA, since the own implementation of a single algorithm is
often difficult and time-consuming. The library architecture is
divided into two parts, which we call algorithms and benchmarks.

In addition to the developed normal EA versions, we can also find
hybrid variants, such as hybrid bat algorithm and self-adaptive
differential evolution algorithm. The framework supports EA
startup and testing with predefined and generated comparisons,
while also allowing the export of results in three different formats,
which are LaTeX, JSON and Excel [13].

Although some similar frameworks for managing nature-inspired
algorithms already exist, NiaPy differs mainly in minimalism and
ease of use. Its main functions are weak coupling, good
documentation, user friendliness, fair comparison of algorithms,
quick overview of results and friendly support community. NiaPy

project is designated as open source and licensed under an MIT
license. Because the framework is developed in Python

programming language, installation is possible on all systems,
which have the support for the language and installed PIP package
manager. Due to further development, new algorithms are being
added to the framework and the previously implemented
algorithms are being further improved [13].

One of the algorithms implemented in NiaPy is also PSO, which
is a population stochastic optimization algorithm and belongs to

the EA group. The algorithm, which is based on the behavior of
the swarms of animals such as fish and birds was first developed
by James Kennedy and Russel Eberhart in the mid-90s of the 20th
century. It was created as a by-product of the desire to graphically
represent various flight patterns of animals [6], [8], [14], [15].

The PSO population is referred to as a swarm and instances inside
of it flying particles, which are constantly moving inside of a
hyperdimensional search space. The position between particles is
determined with social-psychology tendency to be better and to
imitate other, closer instances [6], [8]. Each particle is moving
with its own speed, knows its previous locations and never goes

extinct, because there is no selection, mutation or recombination
[10]. Velocity is changed in every generation/iteration. For
changing velocity, we have three different parts, namely previous
velocity, cognitive component and social component

First component represents the memory of the previous direction
motion and prevents the current flight direction from drastically
changing. Second component expresses the performance of the
current particle with respect to past results. Lastly, third
component expresses the performance of the current particle with
respect to some group of particles or neighbors around it [8].

During the operation, we need to store some other information
like information about the best found location of each particle
(pbest), information about the best found location of the currently
selected part of the swarm (lbest) and information about the best

found location of the particle of any swarm (gbest). When finding
new top locations, current values need to be updated [6], [8]. The
PSO algorithm uses fitness function for guidance of the search
over the search space. When the stopping condition is meet,
algorithms returns global best solution found [10].

3. IMPLEMENTATING PSO FOR MDVRP
For the purpose of the experiment we used programming language
Python to develop a system, which allows application of any EA
from NiaPy library to the different MDVRP examples. The
system can handle CSV cases of VRP made by Cordeau [12].

The system consists of several different classes, one of which is
class Evaluation, which is responsible for solving the problem. In
the class we firstly convert given genotype from imported EA to
an appropriate phenotype, which can be then used to tackle the
problem. First genotype to phenotype conversion assigns
ascending index number to each gene, according to its value in the

array. Second conversion assigns genes, representing nodes or
customers, to specific vehicles based on the value scale, made of
number of depots.

The fitness function of the program itself is quite simple, since it
only adds up all the paths made to the total distance. This then
represents the fitness value of the current instance. It is also
important to add penalty to the result, if solution violated any of
the limitations of the MDVRP. This is done by checking the limits
during the program operation and in case of a violation, send the
current result into the penalty function, which then adds a certain
distance unit to the distance already completed.

Figure 1. MDVRP example.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

54

Another important class is Graph, which is responsible for
drawing different graphs and connecting nodes of customers and
depots on it with paths. Each customer and depot object have its
own coordinate pair x and y, which is then plotted on a graph and
connected to paths, obtained from the current result object. The

final graph thus illustrates all the paths made by vehicles between
all the customers and depots. The class can also draw a final bar
graph of all fitness values across generations, received through the
objects of all solutions. Image Class on the other hand, captures
an image from a drawn graph and saves it to the appropriate
directory. It can also use previously stored images to generate
animated gifs that show the composition of the found route.

The program itself starts in its main function, where we specify
desired parameters, such as population size, number of
generations to be made, number of instances inside one
generation, seed value and genotype to phenotype conversion.

Results are displayed on the console at the end of the solving.

4. RESULTS OF THE EXPERIMENT
The experiment we conducted was performed on five MDVRP
cases and with five competitive evolutionary algorithms (Particle
Swarm Optimization PSO, Evolutionary Strategy ES, Genetic

Algorithm GA, Differential Evolution DE and Harmony Search
HS), using settings of 10 generations, 5 instances and 20 units of
distance as the penalty value. Each of five test cases was run with
a random seed value between 1.000 and 10.000 and with first
genotype to phenotype conversion. Unfortunately, the testing was
only performed once due to poor hardware capabilities, which
were processor Intel Core i5-6267U 3.300Ghz, graphic card Intel
Iris Graphics 550, Kingston 8Gb RAM and Liteon 250Gb SSD.

The experiment was performed on the Linux operating system
Ubuntu 18.04.

The exact NiaPy algorithms, which were used in the testing are

GeneticAlgorithm for GA, EvolutionStrategyMpL for ES,
DifferentialEvolution for DE, ParticleSwarmAlgorithm for PSO
and HarmonySearch for HS. Settings of individual evolutionary
algorithm were left at default values from the NiaPy framework.

When testing on the first and simplest example of the problem
pr00 (2 depots/vehicles and 10 customers), PSO fund the fourth
best route, which is not exactly good. It was overtaken by all the
algorithms except the ES, which achieved an even worse fitness
result. Comparing on the execution time of the algorithms, the
PSO achieved the best value, although it was quite like the DE
and HS values. All the results described are shown in Table 1.

Table 1. Test results of solving the example pr00

Algorithm
Fitness

(unit of distance)

Run time

(seconds)

GA 688.02 168.59

ES 774.52 155.93

DE 711.88 148.61

PSO 749.02 148.43

HS 679.10 148.78

GA achieved the best fitness value in solving the second MDVRP
case pr04 (4 depots/vehicles and 192 customers). Again, the PSO
found the fourth best route with 13603.86 units of distance, and
the worst path was found by the ES. This time, PSO solved the
problem with the second fastest time, as it was overtaken by the
DE for only one second. Results are shown in Table 2.

Table 2. Test results of solving the example pr04

Algorithm
Fitness

(unit of distance)

Run time

(seconds)

GA 13282.01 3906.96

ES 13640.05 3808.14

DE 13476.95 3713.49

PSO 13603.86 3714.37

HS 13573.96 3865.54

PSO achieved the second-best fitness value when solving the third
MDVRP case - pr08 (6 depots/vehicles and 144 customers),

which is interesting because the example was a bit easier that he
previous one. It also solved the problem as the fastest
optimization algorithm of all tested. Overall, the algorithm proved
to be a good choice for solving the specific case. Test results are
recorded in Table 3.

Table 3. Test results of solving the example pr08

Algorithm
Fitness

(unit of distance)

Run time

(seconds)

GA 13282.01 3906.96

ES 13640.05 3808.14

DE 13476.95 3713.49

PSO 13603.86 3714.37

HS 13573.96 3865.54

The fourth MDVRP case pr14 (4 depots/vehicles and 192
customers) was similar in complexity to the second, but with one
depot less. PSO solved the problem well again, with its fitness

result reaching second place, and ES reaching last place. With
3709.32 seconds, PSO solved the problem fastest once again. All
the results can be seen in Table 4.

Table 4. Test results of solving the example pr14

Algorithm
Fitness

(unit of distance)

Run time

(seconds)

GA 13723.88 3896.00

ES 13885.56 3732.49

DE 13494.85 3755.60

PSO 13500.67 3709.32

HS 13873.96 3950.66

The toughest test case pr20 (6 depots/vehicles and 288 customers)
was with 21085.43 units of distance best resolved by PSO – the
rest of the algorithms were left behind by about 200 units of
distance or more. It achieved the third-best computing time, and
interestingly GA achieved first, although its fitness value wasn’t

very good. All the test results are shown in Table 5.

Table 5. Test results of solving the example pr20

Algorithm
Fitness

(unit of distance)

Run time

(seconds)

GA 21610.55 7341.09

ES 21397.89 7345.13

DE 21224.04 7487.69

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

55

PSO 21085.43 7461.45

HS 21293.09 7656.94

If we look at Table 6, we can see the rankings of the PSO

algorithm in fitness scores and runtime relative to the other
algorithms. The PSO reached an average of 2.6 for fitness
rankings and 1.6 for the runtime, and thus solved MDVRP cases
the best of all the tested algorithms. It handled more difficult cases
better but achieved the fastest resolution times for all of the
MDVRP examples.

We ran the test cases again with second conversion of genotype to
phenotype but did not get any different results – all fitness scores
and running times have overall deteriorated.

Table 6. The PSO algorithm ranks

Order of

place
pr00 pr04 pr08 pr14 pr20

Fitness 4 4 2 2 1

Run time 1 2 1 1 3

5. CONCLUSIONS
In this paper we present the application of particle swarm
optimization algorithm with the usage of NiaPy optimization
framework on the multi-depot capacitated vehicle routing
problem. Our approach differs from the similar relevant

approaches in the way we represent the optimization problem. In
the literature it is normal to treat routing problems as discreet
optimization problems. As this was not possible with the usage of
NiaPy optimization framework, we presented a method on how to
solve MDVRP as the continuous optimization problem.

The proposed method was tested on several standard MDVRP
benchmark sets and the results of PSO were compared with
several evolutionary algorithms. The results of the experiment

show that PSO of continuous optimization is a viable and
competitive method for solving MDVRP, especially in the speed
of the optimization – it was the fastest in three cases out of five
sets. Our proposed PSO reached the best (shortest) route in only
one case and it resulted with second shortest routes in two other
cases. Thus, we can conclude that PSO can effectively solve
MDVRP problem with competitive solutions in fastest run times
out of all five included algorithms.

Future work includes the implementation of advanced PSO
operators from the referenced literature and customizing them for
the continuous optimization. Also, there are numerous other VRP
variants, which should be tested with our proposed approach.

6. ACKNOWLEDGMENTS
The authors acknowledge financial support from the Slovenian
Research Agency (Research Core Funding No. P2-0057).

7. REFERENCES
[1] W. Cao and W. Yang, “A Survey of Vehicle Routing
Problem,” MATEC Web Conf., vol. 100, pp. 1–6, 2017.

[2] I.-M. Chao, E. Wasil, and B. L. Golden, “A new heuristic for
the multi-depot vehicle routing problem that improves upon best-
known solutions,” Am. J. Math. Manag. Sci., vol. 13, no. 3–4, pp.

371–406, 1993.

[3] W. Ho, G. T.S. Ho, P. Ji, and H. C.W. Lau, “A hybrid genetic
algorithm for the multi-depot open vehicle routing problem,” Eng.
Appl. Artif. Intell., vol. 21, pp. 401–421, 2008.

[4] S. Karakatič and V. Podgorelec, “A survey of genetic
algorithms for solving multi depot vehicle routing problem,”
Appl. Soft Comput. J., vol. 27, pp. 519–532, 2015.

[5] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet,
“Classical and modern heuristics for the vehicle routing problem,”
Int. Trans. Oper. Res., vol. 7, pp. 285–300, 2000.

[6] S. Luke, Essentials of Metaheuristics, Second Edi. 2013.

[7] B. M. Baker and M. A. Ayechew, “A genetic algorithm for the
vehicle routing problem,” Comput. Oper. Res., vol. 30, no. 5, pp.
787–800, 2003.

[8] A. P Engelbrecht, “Computational Intelligence.” p. 597, 2007.

[9] A. Shukla, R. Tiwari, and R. Kala, Real Life Applications of
Soft Computing. 2012.

[10] R. Storn and K. Price, “Differential Evolution – A Simple
and Efficient Heuristic for Global Optimization over Continuous
Spaces,” J. Glob. Optim., pp. 341–359, 1997.

[11] P. Surekha, Sumathi, and Dr.S., “Solution To Multi-Depot
Vehicle Routing Problem Using Genetic Algorithms,” World
Appl. Program., vol. 1, no. 3, pp. 118–131, 2011.

[12] N. and E. O. G. University of Málaga, “Multiple Depot VRP
with Time Windows Instances,” 2013. [Online]. Available:
http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-with-
time-windows-instances. [Accessed: 31-Aug-2019].

[13] G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister, and I. Fister
Jr., “NiaPy: Python microframework for building nature-inspired
algorithms,” J. Open Source Softw., vol. 3, p. 613, 2018.

[14] X.-S. Yang, “Firefly algorithms for multimodal
optimization,” Springer-Verlag Berlin Heidelb., vol. 5792 LNCS,
pp. 169–178, 2009.

[15] X.-S. Yang and X. He, “Firefly algorithm: recent advances
and applications,” Int. J. Swarm Intell., vol. 1, no. 1, pp. 36–50,
2013.

[16] Mohemmed, A.W., Sahoo, N.C. and Geok, T.K., 2008.
Solving shortest path problem using particle swarm optimization.
Applied Soft Computing, 8(4), pp.1643-1653.

[17] Ai, T.J. and Kachitvichyanukul, V., 2009. A particle swarm
optimization for the vehicle routing problem with simultaneous
pickup and delivery. Computers & Operations Research, 36(5),
pp.1693-1702.

[18] Yao, B., Yu, B., Hu, P., Gao, J. and Zhang, M., 2016. An
improved particle swarm optimization for carton heterogeneous
vehicle routing problem with a collection depot. Annals of
Operations Research, 242(2), pp.303-320.

[19] Kumar, R.S., Kondapaneni, K., Dixit, V., Goswami, A.,
Thakur, L.S. and Tiwari, M.K., 2016. Multi-objective modeling of
production and pollution routing problem with time window: A

self-learning particle swarm optimization approach. Computers &
Industrial Engineering, 99, pp.29-40.

[20] Norouzi, N., Sadegh-Amalnick, M. and Tavakkoli-
Moghaddam, R., 2017. Modified particle swarm optimization in a
time-dependent vehicle routing problem: minimizing fuel
consumption. Optimization Letters, 11(1), pp.121-134.

StuCoSReC K
Pro

oper, Slov
ceedings of the 2019 6

enia, 10 Octob
th

er
 Student Computer Science Research Conference

56

