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ABSTRACT
Multi-depot vehicle routing problem (MDVRP) is an optimization 
problem with practical real-world applications in the commercial 
transportation sector. It deals with the optimization of the time 
and cost of the transportation of goods from and to customers 

from numerous predefined serving depots. The multi-depot variant 
adds constraints of multiple serving depots and variable customer 
serving capacity and is a NP hard problem. In this paper, we 
present an application of Particle Swarm Optimization (PSO) for 
continuous optimization to MDVRP, where nature-inspired 
optimization framework NiaPy is used. As MDVRP is a discreet 
optimization problem, but NiaPy is suited to work only with 
continuous optimization problems, a transformation with the 
repairing mechanism must be used. Our proposed approach is 

presented in detail and is tested on several standard MDVRP 
benchmark sets to provide a sufficient evidence of usability of the 
approach. 

Keywords
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Particle Swarm Optimization 

1. INTRODUCTION
Optimization is a daily problem we face with in an increasing 
number of different logistics services, such as for example mail 
delivery, passenger transportation and other transportation of 

goods [1], [2], [4]. Because solving such problems is - due to 
restrictions on the route often quite difficult, we mostly rely on 
computer intelligence. By this we mean different algorithms that 
have some heuristics rules, which result in good solutions. They 
are classified as metaheuristic algorithms and often also referred 
to as nature-inspired or evolutionary algorithms (EA) [6], [9]. 

In order to execute the experiment of a comparison between 
different EA, we firstly developed a system that allows 

application of any EA to the vehicle routing problem (VRP). Then 
we tackled the VRP using five different evolutionary algorithms, 
which are genetic algorithm (GA), evolution strategy (ES), 
differential evolution (DE), particle swarm optimization (PSO) 
and harmony search (HS). Considering the obtained results, we 
decided to pay more attention to the PSO algorithm. 

PSO is a popular algorithm for solving many complex 
optimization problems, including routing problems. In 2008 

Mohemmed et al. [16] used PSO for simple routing problem with 
custom priority-based encoding and heuristic operator to prevent 
loops in the path construction. Next in 2009, Ai and 
Kachitvichyanukul [17] presented PSO with multiple social 
structures to solve VRP with simultaneous pickup and delivery. 

Yao et al. [18] proposed custom particle swarm optimization 
algorithm for carton heterogeneous vehicle routing problem. 
Kumar et al. [19] proposed a PSO for vehicle routing problem 
with time window constraint. More recently, Norouzi et al. [20] 
extended VRP with time window problem with additional fuel 
consumption constraint and solved the problem also with PSO. 
All these approaches treat routing problem as a discreet problem. 
As we used optimization framework, which only works with 
continuous optimization problem, the approaches from the 

referenced papers could not be used and a transformation was 
necessary. 

The remaining of the paper is structured as follows. Second 
section presents and formulates MDVRP and PSO. Next section 
presents our proposed approach and its implementation with 
NiaPy framework. Fourth section presents the results of the 
experiment of the proposed approach on the standard benchmark 
sets. Last section discusses the results of the experiments and 

finishes with the concluding remarks. 

2. SOLVING MDVRP
Logistic companies and other carriers, tasked with transporting or 
picking up shipments, face with route optimization on a daily 
level. The well-optimized route, taken by their fleets of vehicles, 

means saving fuel and thus reducing overall daily cost. From this 
we can see that similar scenarios are present in in everyday life 
and present a problem worth solving well. 

The described problem is called VRP and was first addressed by 
George Dantzig and John Ramser in 1959, as a solution to 
optimize fuel delivery. It is a NP hard combinatorial optimization 
problem, generalized from travelling salesman problem, so there 
is no polynomial time solution known to it [1], [3]. The result of 

the problem is the optimal set of routes for multiple vehicles, 
transporting goods to or from customers, subject to restrictions 
along the routes. We also need to keep in mind that only one 
vehicle can visit specific customer at a time [1], [7].  

Over time, different classifications of the problem have formed 
due to differences in constraints. The most common versions of 
the problem are VRP with capacity constraints (CVRP), multi-
depot VRP (MDVRP) and VRP with time windows constraints 

(VRPTW). In addition, just about every problem classification 
also has a certain distance limit of the individual vehicle [1], [4]. 

We focused on solving MDVRP classification of the problem, 
which is also less frequently referred to as multi-depot capacitated 
vehicle routing problem (MDCVRP) [4]. The version of the 
problem, in addition to multiple customers, consists of multiple 
depots and thus more predefined vehicles - each vehicle can carry 
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a certain payload, travel a certain distance and must eventually 
return to its starting depot [3], [11]. If any of the restrictions is 
violated, penalty function is used to punish the vehicle with a 
certain mark-up value. Because MDVRP is represented as a 
directed graph, every node of customer and depot has its own x 

and y coordinate pair [4], [5]. When looking for a solution to the 
problem, we usually divide it into three phases, collectively 
referred to as decision making or decision hierarchy in MDVRP. 
We call them the merging phase, the routing phase and the 
scheduling phase. In the first phase, we try to allocate customers 
to the individual depots according to the distance, which is present 
between them. The second phase, with previously divided 
customers, draws up several routes, which vehicles will take. 

After that, each path is sequenced in the third phase [3], [11]. 

Figure 1 is an example of MDVRP problem, where letters A and 
B represent depots or vehicles with a maximum capacity of 10 
units of weight, and circles with numbers represent different 
customers. There are four paths between depots and customers, 
based on genotype numbers that are converted to phenotype 
numbers by the first conversion method. The routes were 
determined according to the previously mentioned MDVRPs 

decision hierarchy. 

2.1 Particle Swarm Optimization for MDVRP 
The system we developed for experiment purposes, supports 

importing any EA from the library or microframework called 
NiaPy. It was developed by researches from the Faculty of 
Electrical Engineering and Computer Science and the Faculty of 
Economics and Business from University of Maribor. Main 
purpose for developing the framework was lack of easy and fast 
use of EA, since the own implementation of a single algorithm is 
often difficult and time-consuming. The library architecture is 
divided into two parts, which we call algorithms and benchmarks. 

In addition to the developed normal EA versions, we can also find 
hybrid variants, such as hybrid bat algorithm and self-adaptive 
differential evolution algorithm. The framework supports EA 
startup and testing with predefined and generated comparisons, 
while also allowing the export of results in three different formats, 
which are LaTeX, JSON and Excel [13].  

Although some similar frameworks for managing nature-inspired 
algorithms already exist, NiaPy differs mainly in minimalism and 
ease of use. Its main functions are weak coupling, good 
documentation, user friendliness, fair comparison of algorithms, 
quick overview of results and friendly support community. NiaPy 

project is designated as open source and licensed under an MIT 
license. Because the framework is developed in Python 

programming language, installation is possible on all systems, 
which have the support for the language and installed PIP package 
manager. Due to further development, new algorithms are being 
added to the framework and the previously implemented 
algorithms are being further improved [13]. 

One of the algorithms implemented in NiaPy is also PSO, which 
is a population stochastic optimization algorithm and belongs to 

the EA group. The algorithm, which is based on the behavior of 
the swarms of animals such as fish and birds was first developed 
by James Kennedy and Russel Eberhart in the mid-90s of the 20th 
century. It was created as a by-product of the desire to graphically 
represent various flight patterns of animals [6], [8], [14], [15]. 

The PSO population is referred to as a swarm and instances inside 
of it flying particles, which are constantly moving inside of a 
hyperdimensional search space. The position between particles is 
determined with social-psychology tendency to be better and to 
imitate other, closer instances [6], [8]. Each particle is moving 
with its own speed, knows its previous locations and never goes 

extinct, because there is no selection, mutation or recombination 
[10]. Velocity is changed in every generation/iteration. For 
changing velocity, we have three different parts, namely previous 
velocity, cognitive component and social component 

First component represents the memory of the previous direction 
motion and prevents the current flight direction from drastically 
changing. Second component expresses the performance of the 
current particle with respect to past results. Lastly, third 
component expresses the performance of the current particle with 
respect to some group of particles or neighbors around it [8]. 

During the operation, we need to store some other information 
like information about the best found location of each particle 
(pbest), information about the best found location of the currently 
selected part of the swarm (lbest) and information about the best 

found location of the particle of any swarm (gbest). When finding 
new top locations, current values need to be updated [6], [8]. The 
PSO algorithm uses fitness function for guidance of the search 
over the search space. When the stopping condition is meet, 
algorithms returns global best solution found [10]. 

3. IMPLEMENTATING PSO FOR MDVRP
For the purpose of the experiment we used programming language 
Python to develop a system, which allows application of any EA 
from NiaPy library to the different MDVRP examples. The 
system can handle CSV cases of VRP made by Cordeau [12]. 

The system consists of several different classes, one of which is 
class Evaluation, which is responsible for solving the problem. In 
the class we firstly convert given genotype from imported EA to 
an appropriate phenotype, which can be then used to tackle the 
problem. First genotype to phenotype conversion assigns 
ascending index number to each gene, according to its value in the 

array. Second conversion assigns genes, representing nodes or 
customers, to specific vehicles based on the value scale, made of 
number of depots. 

The fitness function of the program itself is quite simple, since it 
only adds up all the paths made to the total distance. This then 
represents the fitness value of the current instance. It is also 
important to add penalty to the result, if solution violated any of 
the limitations of the MDVRP. This is done by checking the limits 
during the program operation and in case of a violation, send the 
current result into the penalty function, which then adds a certain 
distance unit to the distance already completed. 

Figure 1. MDVRP example. 
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Another important class is Graph, which is responsible for 
drawing different graphs and connecting nodes of customers and 
depots on it with paths. Each customer and depot object have its 
own coordinate pair x and y, which is then plotted on a graph and 
connected to paths, obtained from the current result object. The 

final graph thus illustrates all the paths made by vehicles between 
all the customers and depots. The class can also draw a final bar 
graph of all fitness values across generations, received through the 
objects of all solutions. Image Class on the other hand, captures 
an image from a drawn graph and saves it to the appropriate 
directory. It can also use previously stored images to generate 
animated gifs that show the composition of the found route. 

The program itself starts in its main function, where we specify 
desired parameters, such as population size, number of 
generations to be made, number of instances inside one 
generation, seed value and genotype to phenotype conversion. 

Results are displayed on the console at the end of the solving. 

4. RESULTS OF THE EXPERIMENT
The experiment we conducted was performed on five MDVRP 
cases and with five competitive evolutionary algorithms (Particle 
Swarm Optimization PSO, Evolutionary Strategy ES, Genetic 

Algorithm GA, Differential Evolution DE and Harmony Search 
HS), using settings of 10 generations, 5 instances and 20 units of 
distance as the penalty value. Each of five test cases was run with 
a random seed value between 1.000 and 10.000 and with first 
genotype to phenotype conversion. Unfortunately, the testing was 
only performed once due to poor hardware capabilities, which 
were processor Intel Core i5-6267U 3.300Ghz, graphic card Intel 
Iris Graphics 550, Kingston 8Gb RAM and Liteon 250Gb SSD. 

The experiment was performed on the Linux operating system 
Ubuntu 18.04. 

The exact NiaPy algorithms, which were used in the testing are 

GeneticAlgorithm for GA, EvolutionStrategyMpL for ES, 
DifferentialEvolution for DE, ParticleSwarmAlgorithm for PSO 
and HarmonySearch for HS. Settings of individual evolutionary 
algorithm were left at default values from the NiaPy framework. 

When testing on the first and simplest example of the problem 
pr00 (2 depots/vehicles and 10 customers), PSO fund the fourth 
best route, which is not exactly good. It was overtaken by all the 
algorithms except the ES, which achieved an even worse fitness 
result. Comparing on the execution time of the algorithms, the 
PSO achieved the best value, although it was quite like the DE 
and HS values. All the results described are shown in Table 1. 

Table 1. Test results of solving the example pr00  

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 688.02 168.59 

ES 774.52 155.93 

DE 711.88 148.61 

PSO 749.02 148.43 

HS 679.10 148.78 

GA achieved the best fitness value in solving the second MDVRP 
case pr04 (4 depots/vehicles and 192 customers). Again, the PSO 
found the fourth best route with 13603.86 units of distance, and 
the worst path was found by the ES. This time, PSO solved the 
problem with the second fastest time, as it was overtaken by the 
DE for only one second. Results are shown in Table 2. 

Table 2. Test results of solving the example pr04 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13282.01 3906.96 

ES 13640.05 3808.14 

DE 13476.95 3713.49 

PSO 13603.86 3714.37 

HS 13573.96 3865.54 

PSO achieved the second-best fitness value when solving the third 
MDVRP case - pr08 (6 depots/vehicles and 144 customers), 

which is interesting because the example was a bit easier that he 
previous one. It also solved the problem as the fastest 
optimization algorithm of all tested. Overall, the algorithm proved 
to be a good choice for solving the specific case. Test results are 
recorded in Table 3. 

Table 3. Test results of solving the example pr08 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13282.01 3906.96 

ES 13640.05 3808.14 

DE 13476.95 3713.49 

PSO 13603.86 3714.37 

HS 13573.96 3865.54 

The fourth MDVRP case pr14 (4 depots/vehicles and 192 
customers) was similar in complexity to the second, but with one 
depot less. PSO solved the problem well again, with its fitness 

result reaching second place, and ES reaching last place. With 
3709.32 seconds, PSO solved the problem fastest once again. All 
the results can be seen in Table 4. 

Table 4. Test results of solving the example pr14 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 13723.88 3896.00 

ES 13885.56 3732.49 

DE 13494.85 3755.60 

PSO 13500.67 3709.32 

HS 13873.96 3950.66 

The toughest test case pr20 (6 depots/vehicles and 288 customers) 
was with 21085.43 units of distance best resolved by PSO – the 
rest of the algorithms were left behind by about 200 units of 
distance or more. It achieved the third-best computing time, and 
interestingly GA achieved first, although its fitness value wasn’t 

very good. All the test results are shown in Table 5. 

Table 5. Test results of solving the example pr20 

Algorithm 
Fitness  

(unit of distance) 

Run time 

(seconds) 

GA 21610.55 7341.09 

ES 21397.89 7345.13 

DE 21224.04 7487.69 
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PSO 21085.43 7461.45 

HS 21293.09 7656.94 

If we look at Table 6, we can see the rankings of the PSO 

algorithm in fitness scores and runtime relative to the other 
algorithms. The PSO reached an average of 2.6 for fitness 
rankings and 1.6 for the runtime, and thus solved MDVRP cases 
the best of all the tested algorithms. It handled more difficult cases 
better but achieved the fastest resolution times for all of the 
MDVRP examples. 

We ran the test cases again with second conversion of genotype to 
phenotype but did not get any different results – all fitness scores 
and running times have overall deteriorated. 

Table 6. The PSO algorithm ranks 

Order of 

place 
pr00 pr04 pr08 pr14 pr20 

Fitness 4 4 2 2 1 

Run time 1 2 1 1 3 

5. CONCLUSIONS
In this paper we present the application of particle swarm 
optimization algorithm with the usage of NiaPy optimization 
framework on the multi-depot capacitated vehicle routing 
problem. Our approach differs from the similar relevant 

approaches in the way we represent the optimization problem. In 
the literature it is normal to treat routing problems as discreet 
optimization problems. As this was not possible with the usage of 
NiaPy optimization framework, we presented a method on how to 
solve MDVRP as the continuous optimization problem. 

The proposed method was tested on several standard MDVRP 
benchmark sets and the results of PSO were compared with 
several evolutionary algorithms. The results of the experiment 

show that PSO of continuous optimization is a viable and 
competitive method for solving MDVRP, especially in the speed 
of the optimization – it was the fastest in three cases out of five 
sets. Our proposed PSO reached the best (shortest) route in only 
one case and it resulted with second shortest routes in two other 
cases. Thus, we can conclude that PSO can effectively solve 
MDVRP problem with competitive solutions in fastest run times 
out of all five included algorithms. 

Future work includes the implementation of advanced PSO 
operators from the referenced literature and customizing them for 
the continuous optimization. Also, there are numerous other VRP 
variants, which should be tested with our proposed approach. 
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