Mixed-integer programming for additive manufacturing

Gemischt-ganzzahlige Programmierung für die additive Fertigung

  • Since the beginning of its development in the 1950s, mixed integer programming (MIP) has been used for a variety of practical application problems, such as sequence optimization. Exact solution techniques for MIPs, most prominently branch-and-cut techniques, have the advantage (compared to heuristics such as genetic algorithms) that they can generate solutions with optimality certificates. The novel process of additive manufacturing opens up a further perspective for their use. With the two common techniques, Wire Arc Additive Manufacturing (WAAM) and Laser Powder Bed Fusion (LPBD), the sequence in which a given component geometry must be manufactured can be planned. In particular, the heat transfer within the component must be taken into account here, since excessive temperature gradients can lead to internal stresses and warpage after cooling. In order to integrate the temperature, heat transfer models (heat conduction, heat radiation) are integrated into a sequencing model. This leads to the problem class of MIPDECO: MIPs withSince the beginning of its development in the 1950s, mixed integer programming (MIP) has been used for a variety of practical application problems, such as sequence optimization. Exact solution techniques for MIPs, most prominently branch-and-cut techniques, have the advantage (compared to heuristics such as genetic algorithms) that they can generate solutions with optimality certificates. The novel process of additive manufacturing opens up a further perspective for their use. With the two common techniques, Wire Arc Additive Manufacturing (WAAM) and Laser Powder Bed Fusion (LPBD), the sequence in which a given component geometry must be manufactured can be planned. In particular, the heat transfer within the component must be taken into account here, since excessive temperature gradients can lead to internal stresses and warpage after cooling. In order to integrate the temperature, heat transfer models (heat conduction, heat radiation) are integrated into a sequencing model. This leads to the problem class of MIPDECO: MIPs with partial differential equations (PDEs) as further constraints. We present these model approaches for both manufacturing techniques and carry out test calculations for sample geometries in order to demonstrate the feasibility of the approach.show moreshow less
  • Die gemischt-ganzzahlige Programmierung (GGP) wurde seit Beginn ihrer Entwicklung in den 1950er Jahren für eine Vielzahl praktischer Anwendungsprobleme, wie beispielsweise die Reihenfolgeoptimierung, eingesetzt. Exakte Lösungstechniken für GGPe, allen voran Verzweige-und-Begrenze-Techniken, haben (im Vergleich zu Heuristiken wie Genetischen Algorithmen) den Vorteil, dass sie Lösungen mit Optimalitätszertifikaten generieren können. Das neuartige Verfahren der Additiven Fertigung eröffnet eine weitere Perspektive für deren Einsatz. Mit den beiden gängigen Verfahren "Additive Fertigung mit Drahtlichtbogen" und "Laser-Pulverbett-Schmelzen" lässt sich die Reihenfolge planen, in der eine vorgegebene Bauteilgeometrie gefertigt werden sollte. Dabei ist insbesondere der Wärmeübergang innerhalb des Bauteils zu berücksichtigen, da zu hohe Temperaturgradienten beim Abkühlen zu Eigenspannungen und Verformungen führen können. Zur Integration der Temperatur werden Wärmeübergangsmodelle (Wärmeleitung, Wärmestrahlung) in ein mathematischesDie gemischt-ganzzahlige Programmierung (GGP) wurde seit Beginn ihrer Entwicklung in den 1950er Jahren für eine Vielzahl praktischer Anwendungsprobleme, wie beispielsweise die Reihenfolgeoptimierung, eingesetzt. Exakte Lösungstechniken für GGPe, allen voran Verzweige-und-Begrenze-Techniken, haben (im Vergleich zu Heuristiken wie Genetischen Algorithmen) den Vorteil, dass sie Lösungen mit Optimalitätszertifikaten generieren können. Das neuartige Verfahren der Additiven Fertigung eröffnet eine weitere Perspektive für deren Einsatz. Mit den beiden gängigen Verfahren "Additive Fertigung mit Drahtlichtbogen" und "Laser-Pulverbett-Schmelzen" lässt sich die Reihenfolge planen, in der eine vorgegebene Bauteilgeometrie gefertigt werden sollte. Dabei ist insbesondere der Wärmeübergang innerhalb des Bauteils zu berücksichtigen, da zu hohe Temperaturgradienten beim Abkühlen zu Eigenspannungen und Verformungen führen können. Zur Integration der Temperatur werden Wärmeübergangsmodelle (Wärmeleitung, Wärmestrahlung) in ein mathematisches Reihenfolgemodell integriert. Dies führt zur Problemklasse von GGPPDGL: GGPe mit partiellen Differentialgleichungen (PDGLn) als weitere Nebenbedingungen. Wir stellen diese Modellansätze für beide Fertigungstechniken vor und führen Testrechnungen für Probegeometrien durch, um die Machbarkeit des Ansatzes zu demonstrieren.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Stastistics
Metadaten
Author: Jesse Beisegel, Johannes Buhl, Rameez Israr, Johannes Schmidt, Markus Bambach, Armin FügenschuhORCiD
URN:urn:nbn:de:kobv:co1-opus4-57317
DOI:https://doi.org/10.26127/BTUOpen-5731
Series (Serial Number):Cottbus Mathematical Preprints (23, 2021)
Document Type:Working paper
Language:English
Year of Completion:2021
Release Date:2022/01/06
Tag:Additive Fertigung mit Drahtlichtbogen; Finite-Elemente-Methode; Gemischt-ganzzahlige Programmierung; Laser-Pulverbett-Schmelzen; Partielle Differenzialgleichungen
Finite element method; Laser powder bed fusion; Mixed-integer programming; Partial differential equations; Wire arc additive manufacturing
GND Keyword:Rapid Prototyping <Fertigung>; Ganzzahlige Optimierung; Finite-Elemente-Methode; Partielle Differentialgleichung
Institutes:Fakultät 1 MINT - Mathematik, Informatik, Physik, Elektro- und Informationstechnik / FG Ingenieurmathematik und Numerik der Optimierung
Licence (German):Creative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.