Vol. 8
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-06-04
Analysis and Design of All-Optical Switching in Apodized and Chirped Bragg Gratings
By
Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008
Abstract
In this paper, effects of the different apodization and chirp functions in one-dimensional nonlinear Bragg grating on switching characteristics are studied. It is shown that with increasing the Gaussian width in the case of Gaussian apodization, slope of transfer function is increased. The situation is same in the case of raised cosine apodization function too. Also, in the case of quadratic apodization with decreasing the apodization parameter the slope of the transfer function is improved. Using the chirp different functions the switching threshold can be controlled. So, the presented structure as optical switch can be designed for optimum slope and threshold of switching using desired apodization and chirp functions. So, the presented material in this paper shows that there are possibilities for management of all-optical switching using suitable apodization and chirp functions.
Citation
Mohammad Moghimi, Hassan Ghafoori-Fard, and Ali Rostami, "Analysis and Design of All-Optical Switching in Apodized and Chirped Bragg Gratings," Progress In Electromagnetics Research B, Vol. 8, 87-102, 2008.
doi:10.2528/PIERB08041303
References

1. Erdogan, T., "Fiber grating spectra," J. Lightwave Technology, Vol. 15, No. 8, Aug. 1997.
doi:10.1109/50.618322

2. Zhao, J., X. Shen, and Y. Xia, "Beam splitting, combining, and cross coupling through multiple superimposed volume-index gratings," Optics & Laser Technology , Vol. 33, 23-28, 2001.
doi:10.1016/S0030-3992(00)00109-2

3. Hruschka, P. C., U. Barabas, and L. Gohler, "Optical narrowband filter without resonances," Ser.: ELEC. ENERG, Vol. 17, 209-214, 2004.

4. Kulishov, M., "Interdigitated electrode-induced phase grating with an electrically switchable and tunable period," Applied Optics, Vol. 38, No. 36, 1999.
doi:10.1364/AO.38.007356

5. Kulishov, M., "Tunable electro-optic microlense array, I. Planar geometry," Applied Optics, Vol. 39, No. 14, 2000.
doi:10.1364/AO.39.002332

6. Kulishov, M. and X. Daxhelet, "Electro-optically reconfigurable waveguide superimposed gratings," Optics Express, Vol. 9, No. 10, 2001.

7. Kulishov, M., P. Cheben, X. Daxhelet, and S. Delprat, "Electrooptically induced tilted phase gratings in waveguides ," J. Opt. Soc. Am. B, Vol. 18, No. 4, 2001.
doi:10.1364/JOSAB.18.000457

8. Kulishov, M., X. Daxhelet, M. Gaidi, and M. Chaker, "Electronically reconfigurable superimposed waveguide longperiod gratings," J. Opt. Soc. Am. A, Vol. 19, No. 8, 2002.
doi:10.1364/JOSAA.19.001632

9. Kulishov, M., X. Daxhelet, M. Gaidi, and M. Chaker, "Transmission spectrum reconfiguration in long-period gratings electrically induced in pockels-type media with the help of a periodical electrode structure," J. Lightwave Technology, Vol. 22, No. 3, 2004.
doi:10.1109/JLT.2004.825760

10. Glytsis, E. N., T. K. Gaylord, and M. G. Moharam, "Electric field, permittivity, and strain distributions induced by interdigitated electrodes on electrooptic waveguides ," J. Lightwave Technology, Vol. 5, No. 5, May 1987.
doi:10.1109/JLT.1987.1075558

11. Ramaswami, R. and K. N. Sivarajan, Optical Networks, A Practical Perspective, Morgan Kaufmann, San Fransisco, CA, 1998.

12. Roberts, G. F., K. A. Williams, R. V. Penty, I. H. White, M. Glick, D. McAuley, D. J. Kang, and M. Blamire, Monolithic 2x2 Amplifying Add/Drop Switch for Optical Local Area Networking, ECOC'03,, Vol. 3, 736-737, Sept. 24, 2003.

13. Dugan, A., L. Lightworks, and J. C. Chiao, "The optical switching spectrum: A primer on wavelength switching technologies," Telecommun. Mag., May 2001.

14. Dobbelaere De, P., K. Falta, L. Fan, S. Gloeckner, and S. Patra, "Digital MEMS for optical switching ," IEEE Commun. Mag., 88-95, Mar. 2002.
doi:10.1109/35.989763

15. Bregni, S., G. Guerra, and A. Pattavina, "State of the art of optical switching technology for all-optical networks," Communications World, WSES Press, Rethymo, Greece, 2001.

16. Mukherjee, B., Optical Communication Networks, Mc-Graw-Hill, New York, 1997.

17. Yariv, A., Quantum Electronics, John Wiley, 1989.

18. Nishihara, H., M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1989.

19. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

20. Aberg, I., "High-frequency switching and Kerr effect — Nonlinear problems solved with nonstationary time domain techniques," Progress In Electromagnetics Research, Vol. 17, 185-235, 1997.
doi:10.2528/PIER97021200