Vol. 107
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-11-25
Predictive Capacity of FDTD Method Embedding MTLN Technique for Lightning and HIRF Threats
By
Progress In Electromagnetics Research C, Vol. 107, 33-47, 2021
Abstract
In this paper, the effectiveness for inferring the responses to electromagnetic threats of the finite difference time domain method combined with a multi-conductor, multi-shield and multi-branched cable harness transmission line solver is validated by comparing simulation results with measurements performed on an equipped cockpit partially made by carbon fiber composite. A complete lightning indirect effects and high-intensity radiated field testing campaign was carried out in this cockpit within the scope of the European research and technology project Clean Sky 2 whose main goal is to reduce the aviation environmental impact by, for instance, building low-weight aircrafts with the increasing use of carbon fiber. Simulations are performed with EMA3D and MHARNESS obtaining very good agreement with measurements for a variety of observables and in a wide frequency range, thus proving the predictive capacity of these numerical methods for estimating the electromagnetic behavior of complex structures.
Citation
Guadalupe Gutierrez Gutierrez, Tim McDonald, Carlos Rodriguez Paños, Raul Molero Castejon, Hugo Tavares, Hirahi Galindo Perez, and Enrique Pascual-Gil, "Predictive Capacity of FDTD Method Embedding MTLN Technique for Lightning and HIRF Threats," Progress In Electromagnetics Research C, Vol. 107, 33-47, 2021.
doi:10.2528/PIERC20092006
References

1. HIRF-SE project European Commission, , , Dec. 2008{May 2013, http://www.hirf-se.eu.

2. UAVEMI, , , http://www.inta.es/opencms/export/sites/default/INTA/es/bolsa-deempleo/oportuni-dad 1489394499029.

3. UAVE3, , , http://www.inta.es/WEB/uave3/en/objectives.

4. Clean Sky, , , https://www.cleansky.eu.

5. EPICEA project European Commission Horizon 2020, , , Feb. 2016-Jan. 2019, http://epicea-env714.

6. EUROCAE WG31, , , http://www.eurocae.net/about-us/working-groups.

7. PASSARO, , , http://passaro.inegi.up.pt/index.asp.

8. Clean Sky 2, , , https://www.cleansky.eu/innovative-technologies-0.

9. Airbus Defence and Space, , , https://www.airbus.com/defence.html.
doi:10.2528/PIERC18011020

10. EUROCAE ED-107, rev A, Jul. 2010/SAE ARP 5583, Guide to certification of aircraft in a high-intensity radiated field (HIRF) environment, rev A, Jun. 2010.
doi:10.2528/PIERC18062705

11. EUROCAE ED-105, rev A, Jul. 2013/SAE ARP 5416, Aircraft lightning test methods, rev A, Jan. 2013.
doi:10.1109/TEMC.2017.2747771

12. Rothenhausler, M., A. Ruhfass, and T. Leibl, "Broadband DCI as a multi usable EMC-test method," 2008 IEEE International Symposium on Electromagnetic Compatibility, 1-5, Aug. 2008.
doi:10.2528/PIERL12030206

13. Zhang, B. and U. Jiang, "Research progress of direct current injection technique in aircraft emc test," 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 843-849, Oct. 2009.

14. CATIA by Dassault Systemes, , , http://www.3ds.com.
doi:10.1109/TAP.1966.1138693

15. EMA3D, , , https://www.ema3d.com.

16. Gutierrez, G. G., E. P. Gil, D. G. Gomez, and J. I. P. Gomez, "Finite-difference time-domain method applied to lightning simulation and aircraft certification process," International Symposium on Electromagnetic Compatibility EMC Europe, York, UK, 2011.
doi:10.1109/15.584942

17. Gil, E. P. and G. G. Gutierrez, "Simplification and cleaning of complex CAD models for EMC simulations," International Symposium on Electromagnetic Compatibility EMC Europe, York, UK, 2011.

18. Gutierrez, G. G., S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of geometric simplifications on lightning strike simulations," Progress In Electromagnetics Research C, Vol. 83, 15-32, 2018.

19. Gutierrez, G. G., S. F. Romero, M. Gonzaga, E. Pascual-Gil, L. D. Angulo, M. R. Cabello, and S. G. Garcia, "Influence of geometric simplifications on high-intensity radiated field simulations," Progress In Electromagnetics Research C, Vol. 86, 217-232, 2018.

20. Fernandez Romero, S., P. Lopez Rodriguez, D. Escot Bocanegra, D. Poyatos Martinez, and M. Anon Cancela, "Comparing open area test site and resonant chamber for unmanned aerial vehicle's highintensity radiated field testing," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 6, 1704-1711, 2018.

21. Gutierrez, G. G., S. F. Romero, J. Alvarez, S. G. Garcia, and E. P. Gil, "On the use of FDTD for HIRF validation and certification," Progress In Electromagnetics Research Letters, Vol. 32, 145-156, 2012.

22. Perala, R., T. Rudolph, P. McKenna, and C. Jones, "Application of numerical analysis to the electromagnetic effects validation of aircraft," Proceedings AIAA/IEEE Digital Avionics Systems Conference, IEEE, 1993.

23. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.

24. Weber, C., J. Kitaygorsky, G. Rigden, R. A. Perala, and R. Fisher, "Evaluation of complexity of wire harness models in a HIRF environment," 2013 IEEE International Symposium on Electromagnetic Compatibility, IEEE, Aug. 2013.

25. Vanlandschoot, B. and L. Martens, "New method for measuring transfer impedance and transfer admittance of shields using a triaxial cell," IEEE Transactions on Electromagnetic Compatibility, Vol. 39, 180-185, May 1997.

26. Rigden, G. J., "Integration of multiconductor cable codes with three dimensional time domain finite difference electromagnetic solvers," SAE Technical Paper, SAE International, Sep. 2001.

27. Perala, R. A., G. J. Rigden, and J. R. Elliott, "A historical perspective of system-level TDFD EME simulation," 2007 IEEE International Symposium on Electromagnetic Compatibility, 1-4, 2007.
doi:10.1109/EMCEurope.2019.8871458

28. McDonald, T., R. Fisher, G. Rigden, and R. Perala, "Parallel FDTD electromagnetic effects simulation using on-demand cloud HPC resources," 2013 IEEE International Symposium on Electromagnetic Compatibility, IEEE, Aug. 2013.
doi:10.1109/TEMC.2013.2287049

29. Weber, C., J. A. de Souza Mariano, R. C. C. Freire, and E. Durso-Sabina, "Validation of numerical simulation approach for lightning transient analysis of a transport category aircraft," 2019 International Conference on Lightning and Static Electricity, ICOLSE, 2019.
doi:10.1109/TEMC.2017.2648507

30. CADfix, , , http://www.transcendata.com/products/cadfix.
doi:10.1109/TEMC.2014.2381095

31. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.

32. IEEE Standard P1557, , Standard for validation of computational electromagnetics computer modelling and simulation, Part 1, 2, 2008.
doi:10.1109/TEMC.2013.2291680

33. RTCA/DO-160, issue G, Dec. 2010/EUROCAE ED-14, Environmental conditions and test procedures for airborne equipment, issue G, May 2011.

34. Gil, E. P., G. G. Gutierrez, and R. M. Castejoon, "Application of advanced simulations in time domain in the EMC certification process of an aircraft," Proceedings XXXIII URSI Symposium, Granada, Spain, 2018.

35. Bastard, C., M. Meyer, C. Guiffaut, and A. Reineix, "Ways of improvement for HIRF transfer function assessment on rotorcraft," 2019 ESA Workshop on Aerospace EMC, 1-6, May 2019.

36. Perez, F. C., G. Gutierrez Gutierrez, H. Tavares, A. Khamlichi, J. M. Alberquilla, R. Molero Castejon, N. Matos, and A. R. Lin, "Lightning low level vs high level direct current injection tests on a full scale aircraft cockpit," 2019 International Symposium on Electromagnetic Compatibility --- EMC EUROPE, 644-649, Sep. 2019.

37. Rasek, G. A., E. Pascual-Gil, A. Schroder, I. Junqua, R. Guidi, C. A. Kreller, H. Bruns, and S. E. Loos, "HIRF transfer functions of a fuselage model: Measurements and simulations," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, 311-319, Apr. 2014.

38. Cabello, M. R., S. Fernandez, M. Pous, E. Pascual-Gil, L. D. Angulo, P. Lopez, P. J. Riu, G. G. Gutierrez, D. Mateos, D. Poyatos, M. Fernandez, J. Alvarez, M. F. Pantoja, M. Anon, F. Silva, A. R. Bretones, R. Trallero, L. Nu no, D. Escot, R. G. Martin, and S. G. Garcia, "SIVA UAV: A case study for the EMC analysis of composite air vehicles," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, 1103-1113, Aug. 2017.

39. Rasek, G. A., A. Schroder, P. Tobola, Z. Reznicek, S. E. Loos, T. Tischler, and H. Bruns, "HIRF transfer function observations: Notes on results versus requirements and certification approach," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 2, 195-202, 2015.

40. Schickele, P., X. Ferrieres, and J. Parmantier, "FEM-MTLN hybridization technique to evaluate electrical current on multiconductor cables inside enclosures illuminated by a plane wave," 2019 International Applied Computational Electromagnetics Society Symposium (ACES), 1-2, Apr. 2019.

41. Gutierrez, G. G., J. Alvarez, E. Pascual-Gil, M. Bandinelli, R. Guidi, V. Martorelli, M. F. Pantoja, M. R. Cabello, and S. G. Ga, "HIRF virtual testing on the C-295 aircraft: on the application of a pass/fail criterion and the FSV method," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 4, 854-863, 2014.

42. Romero, S. F., G. G. Gutierrez, A. L. Morales, and M. A. Cancela, "Validation procedure of low level coupling tests on real aircraft structure," International Symposium on Electromagnetic Compatibility EMC, Europe, 2012.