Vol. 88
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-10-31
A Semi-Analytical Approach for Fast Design of Microwave Metasheets with Circular Metal Rings on Dielectric Substrates
By
Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018
Abstract
Metasheets are ultra-thin sheets built from sub-wavelength resonators designed in order to achieve certain frequency-dependent transmission behaviour. A semi-analytical approach based on an equivalent circuit representation is proposed to calculate the microwave transmission through metasheets which consist of 2D periodic arrays of planar circular metal rings with and without substrate. The electromagnetic response of the metasheet can be controlled by changing the radius and periodicity of the circular rings. In the semi-analytical approach, the equations for impedances of the equivalent circuit are parameterized and fitted to match the values of transmission coefficients obtained by full-wave simulations at selected frequency points. Such an approach permits an optimization of the metasheet design with a very small number of full-wave numerical simulations. It is shown that the results of the semi-analytical approach match well with full-wave simulations and measurements within a reasonable range of radius and periodicity values.
Citation
Ezgi Öziş, Andrey Osipov, and Thomas F. Eibert, "A Semi-Analytical Approach for Fast Design of Microwave Metasheets with Circular Metal Rings on Dielectric Substrates," Progress In Electromagnetics Research C, Vol. 88, 13-25, 2018.
doi:10.2528/PIERC18070404
References

1. Ozis, E., A. Osipov, and T. F. Eibert, "Metamaterials for microwave radomes and the concept of a metaradome: Review of the literature," International Journal of Antennas and Propagation, Vol. 2017, No. 1356108, 1-13, 2017.
doi:10.1155/2017/1356108

2. Michael, P. J. and P. M. Corcoran, "Asymmetric radome for phased antenna arrays,", Patent US, No. 20100039346 A1, February 18, 2010.

3. Tretyakov, S. A., "Metasurfaces for general transformations of electromagnetic fields," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, No. 2049, 2049, 2015.
doi:10.1098/rsta.2014.0362

4. Alu, A. and N. Engheta, "Enabling a new degree of wave control with metamaterials: A personal perspective," Journal of Optics, Special Issue on History of Metamaterials, Vol. 19, No. 084008, 1-10, 2017.

5. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, December 2007.
doi:10.1109/TMTT.2007.909611

6. Zedler, M., C. Caloz, and P. Russer, "A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2930-2941, December 2007.
doi:10.1109/TMTT.2007.909608

7. Zhu, B. O., K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, "Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface," Scientific Reports, Vol. 4, No. 4971, 1-7, May 2014.

8. Schelkunoff, S. A., "The impedance concept and its application to problems of reflection, refraction, shielding and power absorption," The Bell System Technical Journal, Vol. 17, No. 1, 17-48, 1938.
doi:10.1002/j.1538-7305.1938.tb00774.x

9. Schelkunoff, S. A., "Some equivalence theorems of electromagnetics and their application to radiation problems," The Bell System Technical Journal, Vol. 15, 92-112, 1936.
doi:10.1002/j.1538-7305.1936.tb00720.x

10. Labate, G., A. Alu, and L. Matekovits, "Surface admittance equivalence principle for non-radiating and cloaking problems," Physical Review A, Vol. 95, No. 063841, 1-7, 2017.

11. Volakis, J. L., T. F. Eibert, D. S. Filipovic, Y. E. Erdemli, and E. Topsakal, "Hybrid finite element methods for array and FSS analysis using multiresolution elements and fast integral techniques," Electromagnetics, Vol. 22, No. 4, 297-313, May 2002.
doi:10.1080/02726340290083905

12. Eibert, T. F. and J. L. Volakis, "Adaptive integral method for hybrid FE/BI modelling of 3-D doubly periodic structures," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 146, No. 1, 17-22, February 1999.
doi:10.1049/ip-map:19990388

13. Diest, K., L. A. Sweatlock, and D. E. Marthaler, "Metamaterials design using gradient-free numerical optimization," Journal of Applied Physics, Vol. 108, No. 084303, 1-5, 2010.

14. Paul, J., V. Podlozny, and C. Christopoulos, "The use of digital filtering techniques for the simulation of fine features in EMC problems solved in the time domain," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 238-244, May 2003.
doi:10.1109/TEMC.2003.810810

15. Christopoulos, C., The Transmission-line Modeling Method (TLM), IEEE Press, New York, 1995.
doi:10.1109/9780470546659

16. Doncov, N., A. J. Wlodarczyk, R. Scaramuzza, and V. Trenkic, "Compact TLM for air-vents," Electronics Letters, Vol. 38, No. 16, 887-889, August 2002.
doi:10.1049/el:20020614

17. Holland, R. and L. Simpson, "Finite-difference analysis of EMP coupling to thin struts and wires," IEEE Transactions on Electromagnetic Compatibility, Vol. 23, 88-97, May 1981.
doi:10.1109/TEMC.1981.303899

18. Duffy, A. P., et al. "New methods for accurate modelling of wires using TLM," Electronic Letters, Vol. 29, No. 2, 224-226, January 1993.
doi:10.1049/el:19930153

19. Trenkic, V., C. Christopoulos, and T. A. Benson, "Simple and elegant formulation of scattering in TLM nodes," Electronics Letters, Vol. 29, No. 18, 1651-1652, September 1993.
doi:10.1049/el:19931099

20. Anderson, I., "On the theory of self-resonant grids," The Bell System Technical Journal, Vol. 54, No. 10, 1725-1731, December 1975.
doi:10.1002/j.1538-7305.1975.tb03551.x

21. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

22. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley and Sons, New York, 2000.
doi:10.1002/0471723770

23. Labidi, M. and F. Choubani, "Electrical equivalent model of meta-materials based on circular SRR," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 6, 909-913, September 2016.
doi:10.1017/S1759078715000604

24. Example-Endfire antenna array, Ansoft High Frequency Structure Simulator v11 User’s Guide, , [online], available: http://data.eefocus.com/myspace/33/165109/bbs/2010-01-04/1262563740 b4171 dec.pdf, [Accessed February 2018].

25. Workshop 9-1: Unit Cell Analysis (Infinite Array), Ansys, , May 2015, [online], http://www.cadfamily.com/download-pdf/ANSYS-HFSS/ANSYS_HFSS_Antenna_W09_1_Unit_Cell.pdf, [Accessed 2018].

26. Rogers Corporation, [online], , available: https://www.rogerscorp.com/acs/producttypes/6/RTduroid-Laminates.aspx, [Accessed 2018].

27. Analyzing Advances in Antenna Materials, [online], , available: http://www.rogerscorp.com/documents/1796/acm/articles/analyzing-advances-in-antenna-materials.pdf. [Accessed 2018].

28. Collin, R. E., Foundations for Microwave Engineering, Mc-Graw-Hill, 1992.

29. Orfanidis, S. J., Electromagnetic Waves and Antennas, http://www.ece.rutgers.edu/∼orfanidi/ewa/, [Accessed 2018], August 2016.

30. Callaghan, P., E. A. Parker, and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces," IEE Proceedings --- H, Microwaves, Antennas and Propagation, Vol. 138, No. 5, October 1991.

31. Coonrod, J., "Understanding when to use FR4 or high frequency laminates," On Board Technology (www.Onboard-Technology.com), 26-30, September 2011.