Vol. 172
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-01-02
A Single-Layer Focusing Metasurface Based on Induced Magnetism
By
Progress In Electromagnetics Research, Vol. 172, 77-88, 2021
Abstract
A transmissive single-layer Huygens unit cell based on induced magnetism is proposed to design low-profile and multi-focus metasurface. The Huygens unit cell consists of a pair of antisymmetric metal elements and a dielectric substrate with only 1.2 mm thickness (λ0/6.8 at 37 GHz). The surface currents flowing in the opposite directions form the circulating electric currents to induce the magnetic currents orthogonal to the electric currents. The full coverage of 2π phase is achieved through optimizing the parameters of the metal elements, which solves the problem of the incomplete phase coverage caused by layer number reduction. With Holographic theory, the compensating phase distribution on the metasurface is calculated. The incident plane wave can be converged to designated points in any desired fashion including focal number, location and intensity distribution, which exhibits outstanding manipulation capability. As the simulations and measured results show, the designed metasurface can achieve good multi-focus focusing characteristics. The focusing efficiency at the center frequency is 43.78%, and the relative bandwidth with 20% focusing efficiency exceeds 20%. The designed metasurface has the advantages of low profile, simple processing, and high efficiency, which has a wide range of application prospects in the fields of millimeter wave imaging, biomedical diagnosis and detection.
Citation
Honggang Hao, Xuehong Ran, Yihao Tang, Sen Zheng, and Wei Ruan, "A Single-Layer Focusing Metasurface Based on Induced Magnetism," Progress In Electromagnetics Research, Vol. 172, 77-88, 2021.
doi:10.2528/PIER21111601
References

1. Marcin, K., "Real-time concealed object detection and recognition in passive imaging at 250 GHz," Appl. Opt., Vol. 58, 3134-3140, 2019.
doi:10.1364/AO.58.003134

2. Li, H. S., X. W. Zhang, X. Q. Zhang, and L. P. Lu, "Design of photoelectric detection sensor incorporated with meso-lens array and its detection screen performance analysis," IEEE Sens. J., Vol. 21, 1444-1452, 2021.
doi:10.1109/JSEN.2020.3016018

3. Cu-Nguyen, P. H., G. Adrian, F. Patrik, S. Andreas, S. Stefan, and Z. Hans, "An imaging spectrometer employing tunable hyperchromatic microlenses," Light: Sci. Appl., Vol. 5, e16058, 2016.
doi:10.1038/lsa.2016.58

4. Yuichi, K., M. Daichi, and S. Shunichi, "Superresolution imaging via superoscillation focusing of a radially polarized beam," Optica., Vol. 5, 86-92, 2018.
doi:10.1364/OPTICA.5.000086

5. Choi, W. C., S. Lim, and Y. J. Yoon, "Evaluation of transmit-array lens antenna for deep-seated hyperthermia tumor treatment," IEEE Antennas Wirel. Propag. Lett., Vol. 19, 866-870, 2020.
doi:10.1109/LAWP.2020.2982676

6. Liao, C. S., P. Wang, C. Y. Huang, P. Lin, G. Eakins, R. T. Bentley, R. G. Liang, and J. X. Cheng, "In vivo and in situ spectroscopic imaging by a handheld stimulated raman scattering microscope," ACS Photonics, Vol. 5, 947-954, 2018.
doi:10.1021/acsphotonics.7b01214

7. Yang, L., Y. Zeng, and R. Zhang, "Channel estimation for millimeter-wave MIMO communications with lens antenna arrays," IEEE Trans. Veh. Technol., Vol. 67, 3239-3251, 2018.
doi:10.1109/TVT.2017.2779828

8. Su, Y. Y. and Z. N. Chen, "A radial transformation-optics mapping for flat ultra-wide-angle dual-polarized stacked GRIN MTM luneburg lens antenna," IEEE Trans. Antennas Propag., Vol. 67, 2961-2970, 2019.
doi:10.1109/TAP.2019.2900346

9. Hsiao, H. H., C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods, Vol. 1, 1600064, 2017.
doi:10.1002/smtd.201600064

10. Wu, R. Y., L. Bao, L. W. Wu, Z. X. Wang, Q. Ma, J. W. Wu, G. D. Bai, V. Galdi, and T. J. Cui, "Independent control of copolarized amplitude and phase responses via anisotropic metasurfaces," Adv. Opt., Vol. 8, 1902126, 2020.
doi:10.1002/adom.201902126

11. Bao, L., R. Y. Wu, X. J. Fu, Q. Ma, G. D. Bai, J. Mu, R. Z. Jiang, and T. J. Cui, "Multi-beam forming and controls by metasurface with phase and amplitude modulations," IEEE Trans. Antenn. Propag., Vol. 66, 6680-6685, 2019.
doi:10.1109/TAP.2019.2925289

12. Mueller, J. P. B., N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, "Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization," Phys. Rev. Lett., Vol. 118, 113901, 2017.
doi:10.1103/PhysRevLett.118.113901

13. Arbabi, A., Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nat. Nanotechnol., Vol. 10, 937-943, 2015.
doi:10.1038/nnano.2015.186

14. Liu, W. W., S. Q. Chen, Z. C. Li, H. Cheng, P. Yu, J. X. Li, and J. G. Tian, "Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface," Opt. Lett., Vol. 40, 3185-3188, 2015.
doi:10.1364/OL.40.003185

15. Zou, M., M. Su, and H. Yu, "Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial," Opt. Mater., Vol. 107, 110062, 2020.
doi:10.1016/j.optmat.2020.110062

16. Cai, T., G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, "High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces," Phys. Rev. Appl., Vol. 8, 034033, 2017.
doi:10.1103/PhysRevApplied.8.034033

17. Cheng, K. Y., Z. Y. Wei, Y. C. Fan, X. M. Zhang, C. Wu, and H. Q. Li, "Realizing broadband transparency via manipulating the hybrid coupling modes in metasurfaces for high-efficiency metalens," Adv. Opt. Mater., Vol. 7, 1900016, 2019.
doi:10.1002/adom.201900016

18. Pfeiffer, C. and A. Grbic, "Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401

19. Xu, H. X., G. W. Hu, L. Han, M. H. Jiang, Y. J. Huang, Y. Li, X. M. Yang, X. H. Ling, L. Z. Chen, J. L. Zhao, and C. W. Qiu, "Chirality-assisted high-efficiency metasurfaces with independent control of phase, amplitude, and polarization," Adv. Opt. Mater., Vol. 7, 1801479, 2019.

20. Jia, S. L., X. Wan, X. J. Fu, Y. J. Zhao, and T. J. Cui, "Low-reflection beam refractions by ultrathin huygens metasurface," AIP Adv., Vol. 5, 4773-4776, 2015.

21. Wang, Z. C., X. M. Ding, K. Zhang, and Q. Wu, "Spacial energy distribution manipulation with multi-focus Huygens metamirror," Sci. Rep., Vol. 7, 9081, 2017.
doi:10.1038/s41598-017-09474-w

22. Chen, K., Y. J. Feng, F. Monticone, J. M. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. M. Ding, S. Zhang, A. Alu, and C. W. Qiu, "A reconfigurable active Huygens' metalens," Adv. Mater., Vol. 29, 1606422, 2017.
doi:10.1002/adma.201606422

23. Abdo-Sanchez, E., M. Chen, A. Epstein, and G. V. Eleftheriades, "A leaky-wave antenna with controlled radiation using a bianisotropic Huygens' metasurface," IEEE Trans. Antennas Propag., Vol. 67, 108-120, 2019.
doi:10.1109/TAP.2018.2878082

24. Song, L. Z., P. Y. Qin, and Y. J. Guo, "A high-efficiency conformal transmitarray antenna employing dual-layer ultrathin Huygens element," IEEE Trans. Antennas Propag., Vol. 69, 848-858, 2021.
doi:10.1109/TAP.2020.3016157

25. Tian, C., Y. C. Jiao, and G. Zhao, "Circularly polarized transmitarray antenna using low-profile dual-linearly polarized elements," IEEE Trans. Antennas Propag., Vol. 16, 465-468, 2017.
doi:10.1109/LAWP.2016.2583486

26. Hsu, C. Y., L. T. Hwang, T. S. Horng, S. M. Wang, F. S. Chang, and C. N. Dorny, "Transmitarray design with enhanced aperture efficiency using small frequency selective surface cells and discrete Jones matrix analysis," IEEE Trans. Antennas Propag., Vol. 66, 3983-3994, 2018.
doi:10.1109/TAP.2018.2839755

27. Yi, X., T. Su, X. Li, B. Wu, and L. Yang, "A double-layer wideband transmitarray antenna using two degrees of freedom elements around 20 GHz," IEEE Trans. Antennas Propag., Vol. 67, 2798-2802, 2019.
doi:10.1109/TAP.2019.2893265

28. Islam, K. M. R. and S. Choi, "Compact double-layer FR4-based focusing lens using high-efficiency Huygens' metasurface unit cells," Sensors, Vol. 20, 6142, 2020.
doi:10.3390/s20216142