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Abstract 
 

This paper discusses the evolution of adaptive filtering, filter structure, adaptive algorithms used for noise cancellation 
over the past five decades. The field of adaptive signal processing has been matter of research for over 50-60 years. The 
major growth occurred in this field in eighties because of the availability of implementation tools and textbooks. 
Adaptive signal processing has made a significant contribution in the last 50 years. The applications of adaptive signal 
processing are very appealing because of its properties like low costing, constancy, fidelity, small sizes, and adjustability. 
This revolutionary change brought along with the problems of noise and the solution is the design of the adaptive filter. 
This paper mainly focused on adaptive filter, and its structure, the Least Mean Square Algorithm (LMS) and Normalized 
Least Mean Square Algorithm (NLMS), used for noise cancellation. This paper could serve as a survey for beginners and 
as a reference to select the related reference of their field. 
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1. Introduction 
 
The designing of electronic system must depend upon the 
different type of noise and distortion. The noise can be 
added during the process of signal through a channel due to 
the slow or fast variations of its properties. As most of the 
time the variations are unknown, so it is adaptive filtering 
that completely eliminates the signals distortion. So the 
adaptive system is something whose structure is adjustable 
as per its performance or behaviour. The main quality of the 
adaptive model is its time variance and self-adjusting nature. 
The adaptive filter with adaptive algorithm finds its 
application in adaptive noise cancellation. 
 The concept behind adaptive noise cancellation is 
discussed in the Fig 1 below. An input signal x n  passes to 
a sensor that also accepts noiseN!(n). This noise N0 (n) is 
not correlated with the signal. The input signal is mixed with 
the noise and forms a noise corrupted signal {Sig n =
x n + N!(n)} or the noisy signal. There is a second sensor 
which captures noise N!(n) which is not related with the 
signal but somehow correlated with the first noise 
signal N!(n). This gives the reference input to the adaptive 
noise canceller model. The output y(n) is produced by 
filtering the noise N!(n) that should be as close as possible 
to N!(n). The generated outputs get subtracted from the 
noise corrupted signal and produce the required signal 
d(n)  =  {Sig(n) –  y(n)}. The adaptive filter is an adequate 
concept that can be able to adjust its transfer function via an 
adaptive algorithm. The adaptive algorithm is to minimize 
the error signal. This error signal is feedback to adaptive 

filter. The adaptive algorithm now try to minimize this error 
signal as minimum as possible. This error signal is an 
important parameter to judge the accuracy of algorithm 
along with its convergence.   
 So to design an adaptive noise cancellation system the 
points listed below needs to be taken care of: 

 
Fig. 1. Basic Concept of Noise Cancellation 

 
 

1. The input signals which is being treated by the 
adaptive filter. 

2. The structure of the filter that shows the 
mathematical relation between output and input 
signal. 

3. Parameters inside the structure that can change the 
input output relationship of the filter. 

4. The most important is adaptive algorithm, required 
to update the parameters of the filter. 
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 So in this paper we provide the journey of adaptive filter, 
filter structures, the basic adaptive LMS algorithm and one 
of its variant i.e. NLMS. 
 The organization of this paper is as follows: Section 2 
gives an overview of adaptive filters; Section 3 discusses the 
different filters structures. Then in the Section 4 the basic 
LMS algorithms and its literature will be shown. Further 
Section 4 discusses the advancement done on one variant of 
LMS algorithm i.e. NLMS and challenges faced by those 
algorithms. The last section concludes the journey. 
 
 
2. Adaptive filter  
 
Norbert Wiener [1] pioneered research was focused on 
designing of adaptive filter. The aim of Wiener was to design 
a filter, which would produce the least mean square error to 
measure the desired signal. The designing of the filter was 
based on the statistical parameters like estimated mean, 
correlation of output signal and the input noise. 
 
2.1 FIR Wiener Filter 
By using the Wiener theory, the concept of the adaptive 
recursive LMS filter was first proposed by B.Widrow and 
Hoff [2]. The filter designed was Finite Impulse Response 
(FIR) or non-recursive filter. The drawback of non-recursive 
filter is, it has a finite impulse response (FIR) and can only 
realize zeros of a digital filter transfer function.The recursive 
filter is one which is structurally capable of realising both 
zeros and poles of digital filter transfer function. It must also 
have infinite impulse response controlled by adjusting its 
weighting coefficient. This theory is given and proved by 
B.Widrow, S.D.Stearns [3] and S.T. Alexnader [4]. They 
have proved that the most common adaptive filter used 
during the adaption process is the FIR filters because they 
are stable and easy to implement. The outcome of FIR 
Wiener filter is the least mean-square of a given signal d(n). 
It is assumed that input signal and desired signal are jointly 
wide-sense stationary with known autocorrelations, rx(k) 
and rd(k), and known cross-correlation rdx(k).  J. R. 
Treichler , M. Bellanger , S. Haykins , and A. H Sayed[5-8], 
in their book denoting the unit impulse response of the 
Wiener filter by w(n), and assuming a (p-1)st-order filter, the 
system function is 
 

W z = w n z!!
!!!

!!!

                                                                (1) 

 
 With x(n) the input signal to the filter, the output signal 
is denoted by d(n), is the convolution of w(n) with x(n), 

 

d n =  w l x(n − l)
!!!

!!!

                                                        (2) 

 
 The Wiener filter model needs to get the coefficients of 
the filter w(k), that reduces the mean-square error 
 
ξ = E e n ! == E d n − d(n)

!
                                (3) 

 
 In order to minimize set of filter coefficients ξ, it is 
necessary and sufficient that if the derivative of ξ with 

respect to w∗(k) is taken then it should be equal to zero for 
all positive values k. 
 
!!

!!∗(!)
= !

!!∗(!)
E e n e∗ n = E e n !!∗ !

!!∗ !
= 0          (4) 

 
With 

e n = d n − w l x n − l                                              (5)
!!!

!!!

 

 
It follows that    

 
 !!

∗(!)
!!∗(!)

= −x∗(n − k) 
 
 So Eq. (2.1.4) become 
 
E e n x∗ n − k = 0   ;    k = 0,1,… , p − 1                   (6) 
 
 This is the principle of orthogonality Substituting Eq. (5) 
into Eq. (6) 
 
E d n x∗ n − k −

w l E x n − l x∗ n −!!!
!!!

k = 0                                                                                           (7) 
 
 Finally, since x(n) and d(n) are alike Wide Sense 
Stationary then 
 
E x n − l x∗ n − k = r! k − l        and 
 
E d n x∗ n − k = r!"(k)   and 
 
Eq. (7) becomes 
 

w l r! k − l = r!" k     ;     
k = 0,1,… . , p − 1

!!!

!!!

                                            (8) 

 
 This is a set of p linear equations in the p unknowns 
w(k), k=0,1,...,p-1. In matrix form, using the fact that the 
autocorrelation sequence is conjugate symmetric, r! k =
r!∗ −k  Eq. (8) becomes  
 

r! 0       r!∗ 1   …… r!∗ p − 1
r! 1       r!∗ 0   …… r!∗ p − 2
r! 2        r!∗ 1   … . . r!∗ p − 3

..

.
. r! p − 1      r!∗ p − 2   ……… . . r!∗ 0

w 0
w 1
w 2
.
.
.

w(p − 1)

=

r!" 0
r!" 1
r!" 2
.
.
.

r!"(p − 1)

                                                                               (9) 

 
 This is the matrix form of the Wiener-Hopf equations. 
Eq. (9) may be written more concisely as 
 
R!w = r!"                                                                                 (10) 
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where R! is ap x pHermitianToeplitz matrix of 
autocorrelations, w is the filter coefficients, and r!" is the 
vector of cross-correlations between the desired signal d(n) 
may be evaluated from Eq. (3) as follows. With 
 
ξ = E e n ! = E e n d n − w l x n − l!!!

!!!
∗
=

E e n d∗ n − w∗ l E e n x∗ n − l!!!
!!!                 (11) 

 
Suppose the filter coefficient w(k) is given as the solution to 
the Wiener-Hopf equation, then it follows from Eq. (6) 
thatE{e n x∗ n − k } = 0. Therefore, the second term in 
Eq. (11) is equal to zero and 
 
 ξ!"# = E e n d∗(n) = E d n − w l x n −!!!

!!!
l d∗(n)                                                                                      (12) 
 
Finally, taking expected values 
 
ξ!"# = r! 0 − w l r!"∗ (l)

!!!
!!!        (13) 

 
or, using vector notation, 
 
ξ!"# = r! 0                  (14) 
 
 Alternatively, since 
 
w
= R!!!r!"                                                                                   (15) 
t 
he minimum error may also be written explicitly in terms of 
the autocorrelation matrix Rx and the cross-correlation 
matrix rdx as follows: 
 
ξ!"# =    r! 0 − r!"! R!!!r!"                                                  (16)                                                                                  
 
 The Weiner filter is not suitable for non-stationary 
signal. For such a kind of situation the filter has to be time-
varying and the solution for this is the Kalman filter. 
 
2.2 Evolution in Adaptive Filter 
R. Kalman [9] claimed that, the Kalman filter can be 
considered as extension of the Wiener filtering concept. The 
objective of Kalman filter is to minimize the least square 
error of a non-stationary signal corrupted with noise. In 
short, Kalman filtering deals with random processes 
described using state-space modelling. For a discrete non 
stationary finite dimensional process a link between the 
Wiener and Kalman theory has given by Nehorai et al [10]. 
The time varying realization and the relation between input 
and output is also explained. The authors have also 
described the state-space for nonstationary process and tried 
to explain Kalman gain with respect to Wiener theory. 

A new filter based on “pontryasih minimum principle” 
has been described by Ahmed s et al. [11]. The best part of 
this method is; it eliminates the need to calculate many 
constant parameters. To update the coefficient of the filter 
the Saura Das Gupta [12] has given an option of a prediction 
error term. In this method, the adaptive algorithm was 
updated by a signum function just by manipulating the 
convergence rate for high order. 
 The concept of generalized multi delay filter was given 
by Eric Marlines [13]. This concept reduced the amount of 

time required for computation. For the case of infinite 
variance impulsive noise and non-Gaussian densities, 
Wiener filter theory is not meaningful. For non –Gaussian 
densities, zero forcing LMS is proven appropriate filter, 
which was designed by Bodenschatz and J.S.1[14].  
 Researcher K. C. Ho [15] has done the implementation 
of two adaptive filters in tandem. The paper has shown the 
implementation of convergence characteristics and tracking 
behaviour of two adaptive filters in tandem. K.C.Ho. has 
also shown a comparison of its performance with only one 
adaptive filter. The algorithm used was Least Mean Square 
and the parameters studied were mean square error, lag bias, 
and lag variance. It has been observed that, the tandem of 
two adaptive filter decreases the convergence speed as 
compared to a single adaptive filter with small step size.  
 Just a year after K. C Ho [16] given the concept of 
multiple LMS adaptive filters in tandem. The paper 
discussed about steady state error and its effect because of 
noise finding lag bias and variance. The Gaussian signal was 
taken as an input signal. For all those cases where the step 
size of filter is equal and small, the error due to noise grows 
linearly and the lag bias decays exponentially with the 
number of filters in tandem.  
  Li. Tan and Jean Jiang [17] designed a filter named as 
Volterra filter. It has been observed that noises comes from a 
dynamic system may be nonlinear and deterministic noise 
rather than a stochastic or white noise. Volterra filter based 
on a multichannel feed forward structure was able to 
overcome it. Undesirable effects of any instability that may 
arise in the filter can be avoided by addition of saturation 
operation at the output [18].A variable step size adaptive 
filter has also been designed by Jingen Mi et al 
[19].Recently the Wiener filter has been implemented using 
wavelet transform by Smital et al [20]. The goal of the 
author was to get a perfect filter bank and find all parameters 
of wiener filter in terms of SNR. Concluding this section, 
Table I has shown the revolution done during past years. 
 
Table I. Revolutionary Years for Adaptive filter generation 
	 Year 

 
Author Contribution References 

1949 Nobert 
Wiener 

Design of wiener 
filter 

[1] 
 

1950 R.Kalman Design of Kalman 
filter 

[9] 
 

1985 Nehorai, A Link between 
Kalman and 
Wiener filter 

[10] 
 

1988 Ahmend s Pontryasih 
minimum 

principle to design 
a filter 

[11] 

1995 Eric 
monlines 

Concept of multi 
delay filter 

[13] 
 

2000 K.C.Ho Theory of two 
adaptive filter in 

tendom 

[15] 
 

2001 K.C.Ho Theory of 
multiple adaptive 
filter in tendom 

[16] 

2001 Li Tan 
 

Generation of 
Volterra filter 

[17] 

2003 H.K. Kwan 
 

Adaptive digital 
IIR filter 

[18] 

2010 Jingen Mi A variable Step 
size matrix filter 

[19] 
 

2013 Smital Adaptive Wavelet 
Wiener Filtering 

[20] 
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3. Adaptive Filter Structure 
 
The adaptive filter realization is divided into two parts, The 
FIR (Finite Impulse Response) filter and IIR (Infinite 
Impulse Response) filter. The most common and most 
popular finite impulse response adaptive filter is transversal 
filter. This is all zero transfer function filter. This filter 
implemented with direct form without feedback as in this 
case the output of this filter is a linear combination of its 
coefficient.  
 The adaptive infinite impulse response adaptive filter can 
also realize with direct form. It is a recursive filter so there 
are so many problems associated with it. It converges 
slowly; depends on the filter structure and need some 
criterion to monitor the stability of poles. To overcome all 
these problems, other options like cascade, lattice, and 
parallel realizations are available. The analysis and 
implementation for the use of non-canonical FIR filters has 
done by Stewart, R.W and Soraghan, J.J.[21]. They have 
shown that for all gradient based algorithm the non-
canonical filter is not a good choice. So it is important to 
reformulate the classical adaptive algorithm and re-
analysed for parameters like convergence and stability.  
 But it has been shown by authors Gan, W.S. et al. [22] 
that, non-canonical FIR structure, performed better in terms 
of reduced excess mean square error level, faster 
convergence even with an abrupt noise environment. But at 
the same time it will be important to take care of step size 
and nonstationary characteristics of non-canonical structure. 
 Researcher Kwan, H.K. and Li, Q.P [23] proposed, 
delayed N-path structures for high-speed adaptive linear 
phase FIR and IIR digital filtering .The resulting throughput 
rate of the designed system using N-path structure reaches 
2N2 times then the old adaptive finite impulse response 
digital filter. Result obtained was high speed structure for 
adaptive noise cancellation. This filter with cascade structure 
updated with gradient algorithm [24] shows slow adaption to 
find the value of error. To overcome the disadvantage of first 
order cascade FIR structure, team of researcher Prandoni et 
al [25] has given a second-order cascade LMS filters. This 
design was able to model most input signals, with smaller 
mean square error than least mean square or lattice least 
mean square. 
  Many structure of IIR realisation has also been 
implemented. A modified cascade structure for IIR adaptive 
algorithm was introduced by authors R.A. David et.al. [26]. 
J.J.Shynk [27]. They have also presented several parallel 
form adaptive IIR filters that included a frequency domain 
implementation based recursive frequency sampling 
structure. In order to improve the performance of IIR based 
systems several modified structure had been introduced such 
as improved parallel realization of infinite impulse response 
adaptive filters based on frequency domain approach. The 
frequency domain implementation led to increased 
convergence rates and lower computational complexity [28].  
 Lattice structure stability can be achieved during the 
adaptation process by D. Parikh, N. Ahmed, and S. D. 
Stearns [29]. A new adaptive lattice structure was proposed 
by I. L. Ayala [30], lattice form algorithms for adaptive IIR 
by J. J. Shynk and group [31],new normalized lattice 
algorithm by M. Tummala [32], Gradient calculation in 
adaptive IIR lattice filters by J. A. Rodr´ [33] and fast 
parallel realization for IIR by P. S. R. Diniz et al [34].One 
recursive nonlinear state space filter has also been designed 

by Gao, F.X.Y et al [35].Those kinds of filters comes in 
picture when there is a need of extended memories. This 
structure will be useful to reduce computation for gradients 
and useful for real time signal processing.  
 Tabus, I. [36] proposed a gradient based maximization 
routine to IIR filter with best parameters. IIR filters 
outperforms with same parameters with good gain then FIR 
filter. Later a hybrid model of FIR/IIR adaptive filter was 
introduced by Pasquato, L. [37], with the aim to deflate main 
problem of adaptive IIR filter.  
 To detect and estimate the frequency of sinusoids with 
Gaussian noises, a new second-order lattice form structure of 
adaptive infinite impulse response (IIR) notch filter was 
proposed by Hong, Liang et al [38]. This was done by 
utilizing least square kurtosis of output signals as a cost 
function; the new gradient-based algorithm updates the 
frequency of the adaptive IIR notch filter. Table II has shown 
revolutionary time during past years for the FIR and IIR 
structure. 
 
Table 2. Revolutionary Concepts Given in the Field of 
FIR/IIR Structure 
Year Author Contribution References 

 
1989 M. L. Non Canonical 

Filter Structure 
for FIR 

[20] 
 

1993 Kwan, H.K. Delayed N-Path 
Structure for FIR 

[23] 
 

1994 Forssen U Cascade 
Structure 1st 

order for FIR 

[24] 
 

1998 Prandoni, P Cascade 
Structure 2nd  
order for FIR 

 

[25] 

1981 R. A. David Cascade 
Structure for IIR 

[26] 

1989 J. J. Shynk Parallel structure 
for IIR 

[27] 

1991 J. A. 
Rodr´ıguez-
Fonollosa 

Lattice Structure 
for IIR 

[33] 

1994 Gao, F.X.Y Recursive state 
space filter for 

IIR 

[35] 

2001 Pasquato, L hybrid FIR/IIR 
adaptive filter 
combination 

[37] 
 

2009 Hong, Liang Lattice structure 
for IIR notch 

filter 

[38] 

 
 
4. The Adaptive Algorithm 
 
After adaptive filter and structure, to update the coefficient 
of adaptive filter; adaptive algorithm is required. The aim of 
adaptive algorithm is to adjust the weights of adaptive filters 
tap vectors to minimize the error. To choose the particular 
adaptive algorithm its computational complexity has to be 
taken care of. The tap weights of a filter can be updated 
using Wiener-Hopf equation. The main attraction of adaptive 
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algorithm is, it can starts from any initial points and slowly 
move towards the main point. There are so many search 
algorithms those were derived to minimize the cost function 
real statistics. The most common algorithm used is Least 

Mean Square (LMS) algorithm. This algorithm is a part of 
steepest decent method, which requires an estimation of the 
gradient signal at each iteration. 

 

 
Fig. 2. Flow chart for LMS algorithm 
 
Table 3. Basic Parameters for LMS algorithm 
Input Parameters: 
Initialization vector ∶                        𝑤 𝑛 = 0 
Input vector:                                                         𝑥 𝑛  
Desired output:                                                    𝑑 𝑛  
Step − size parameter:                                        µ 

Constant: 𝜀 
Filter order:𝑃 
 
Output Parameters: 
Filter output: 𝑦 𝑛  
Coefficient vector: Procedure: 𝑤 𝑛 + 1  
Computation Procedure(Real Valued Functions): 
1.     𝑦 𝑛 =  𝑤! 𝑛 𝑥 =  𝑤! 𝑛 𝑥 𝑛  
2.     𝑒 𝑛 =  𝑑 𝑛 −  𝑦 𝑛  
3.   𝑤 𝑛 +  1 =  𝑤 𝑛 + µ𝑒 𝑛 𝑥∗ 𝑛  

 
Computation Procedure(Complex Valued 
Functions): 
1.     𝑦(𝑛)  =  𝑤!(𝑛)𝑥(𝑛) 
2.     𝑒(𝑛)  =  𝑑(𝑛)  −  𝑦(𝑛) 
3.     𝑤 𝑛 +  1 =  𝑤 𝑛  + µ𝑥(𝑛) 𝑒∗(𝑛) 
 
 
 The LMS (Least Mean Square) algorithm was introduced 
by B.Widrow and M. E. Hoff [39]. LMS algorithm estimates 
the gradient vector from available data. LMS is an iterative 
procedure that makes successive corrections to the weight 
vector. This is done in the direction of negative of the 
gradient vector which in course of time leads to minimum 

mean square error. Flow chart of the algorithm is shown in 
Fig 2. 
 Table III shows input, output parameter, step size 
notation and the equation using which weights has to be 
updated. The adaptive filter using steepest descent has tap 
weight vector equation given by   
 
w!!! = w! + µE e n x∗ n                                                (17) 

 
 There is a practical limitation with this algorithm is that 
the expectation E{e n x∗(n)} is not known. So it was 
replaced by taking estimated sample mean. 
 

E e n x∗ n =
1
L e n − l x∗(n − l)
!!!

!!!

                      (18) 

 Combining this estimate with the steepest descent 
algorithm, updated equation for w!becomes  

 

w!!! = w! +
µ
L e n − l x∗(n − l)
!!!

!!!

                               (19) 

 
 A special case of above equation occurs if it use a one 
point sample mean (L=1), 
 
E e n x∗ n = e n x∗ n                                                    (20)                                                                                               
  
 The update equation to weight update assumes a simple 
form and is known as LMS algorithm. 
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w!!! = w! µe n x∗ n                                                        (21) 
               

 It is simple because it can update for kth coefficient that 
requires only one multiplication and one addition. 
 
w!!!(k) = w!(k) + µe n x∗ n − k                                    (22) 
 
 And because of that an adaptive filter based on LMS 
having p+1 coefficient require 2p+3 multiplications and 
2p+2 additions per output value [40]. The advantages of 
LMS are, its simplicity and numerical stability. The 
limitation are its slow convergence and may not respond 
well in nonstationary environment 
 In last case, weight vector matrix consists of arbitrary 
weight. The tap weight from the previous cycle is W(n), and 
weight vector matrix transposed is W! n . The transposed 
weight matrix (W! n ) is multiplied with the input signal 
vector x(n) through filtering and giving the output 
signal y(n). This is followed by error estimation which is 
obtained as desired signal d(n) minus, output signal y(n) . 
The error signal output e(n) together with step size µ is used 
for tap weight vector adaptation x n + 2µe(n)x(n) . The 
filter weight is updated and process is followed recursively 
till it terminates [41]. 
 LMS algorithm based on the method of steepest decent 
search method and was conditionally stable. The researcher 
Frank F. et al [42] presented a modified LMS algorithm, 
which was unconditionally stable and achieve same mean 
steady state weight as LMS. Modified LMS (MLMS) can 
apply to noise cancellation filters for the case of ideal and 
leaky integration. The modified LMS algorithm is used for 
stationary input.  
 For nonstationary input signals the statistical efficiency 
of LMS algorithm was given by B. Widrow. Then limiting 
behaviour of LMS algorithm was given by Victor solo [43]. 
The idea was to control excess mean square error. The 
reason to control excess mean square error was gradient 
noise misadjustment and lag misadjustment performance. It 
has been seen that the classical lag misadjustment formula 
had missing additional noise misadjustment and variance 
terms. That formula is completed by William A. [44] and 
proved that for local experimental stability, persistence of 
excitation criterion is required.  
  It is also important to reduce weight function by high 
variance data so there is a need of new non gradient 
algorithm that can reduce adaptive filter weight fluctuations. 
This algorithm should adapt a single weight at each time 
step and should be given same computational requirement as 
the LMS algorithm. J Thomos [45] has given an algorithm 
named as SWIM (Single Weight Iteration Method). This 
algorithm used non gradient search techniques. The 
advantages of SWIM algorithm are: very fast convergence, 
low computational requirement, minimum weight 
fluctuations, guaranteed convergence, and is not affected by 
the input signal with large variance. SWIM has also carries 
some drawbacks like, misadjustment, Excess error, rate of 
convergence, stability criterion, effectiveness on different 
type of data input. 
 A nonlinear analytical model for adaptive algorithm was 
proposed by Neil J Bershad et al [46]. They have shown the 
quantization effect of LMS algorithm with the power of two 
step size. Later analysis of real Fourier transform based 
adaptive algorithm has been done and tested with the Hartley 

transform using cosine-sine symmetries by Vasanthan 
Raghvan et. al [47]. 
 Concluding this section, LMS algorithm is the most 
popular used algorithm in adaptive filtering. The important 
features that force everyone to use LMS algorithm are; good 
convergence in stationary environment, stable behaviour, 
low computational; complexity and finite precision 
arithmetic. This section concludes using Table IV shown 
below. It shows   years those contribute with adaptive 
algorithm or given new concepts about the adaptive 
algorithm for adaptive noise cancellation. 
 
4.1. Variants of Adaptive Algorithms 
This section will discuss all those algorithms implemented 
using adaptive filters and are derived from conventional 
LMS algorithm. The objective behind deriving other 
algorithms than LMS is to reduce computational complexity 
or convergence time.  
 
Table 4. Revolutionary Years for LMS Algorithm for Noise 
Cancellation 
Year Author Contribution References 
1960 B.Widrow 

and M. E. 
Hoff 

LMS has been 
introduced 

[39] 

1978 Frank F.  Modified LMS 
has been 
introduced 

[42] 

1992 J. Thomos SWIM has been 
generated 

[45] 

2002 Adel A. 
Zerai 

Failure time 
analysis of LMS 

[61] 

2004 R. A. Soni Low complexity 
data-reusing 
method 

[66] 

2009 J. M. Górriz A novel LMS 
algorithm  

[77] 

 
 
An extended approach to reduce computational complexity 
of LMS algorithm was done by W.A. Sethares and C. R. 
Johnson [48]. They have shown the persistence of excitation 
condition, which guarantees linear 
stability of the quantized error form. The quantized-error 
algorithm reduces the computational complexity of LMS 
algorithm. This theory is given by E. Eweda,  J. C. M. 
Bermudez et al and  W.A. Sethares et al [49-51] through the 
error signal with short word length or by a simple power-of-
two number. B.widrow and S.D. Steanrns [52] implemented 
LMS-Newton algorithm. They worked on the convergence 
speed of algorithm which was independent of the eigen 
value of the input signal correlation matrix. This is done by 
finding the estimated value of the inverse of input signal 
correlation matrix. But it leads to ample increase in the 
computational complexity [53]. 
 There is another side of the LMS algorithm too which 
needs to improve is; its implementation in time domain. The 
LMS algorithm implemented for noise cancellation in 
frequency domain and time domain is compared by Francis 
A reed et al [54]. The result revealed greater amount of 
reduction in computation complexity then the time domain 
with white noise input. The frequency domain algorithm was 
implemented using FFT. In frequency domain, it is also 
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possible to find mean and variance of the tap weights of 
adaptive filters. 
 It was concluded by M. Dentno et al, S. S. Narayan et al, 
D. F. Marshall, [55-57] that the filtering in the transform 
domain results great output in terms of convergence speed 
due to less computational complexity than the time domain 
filtering. They have used DFT (Discrete Fourier Transform) 
and DCT (Discreet cosine Transform) adaptive filtering 
algorithm especially for speech signal processing. But there 
are two problems found by J. C. Lee, C. K. Un, N.J. 
Bershad , P.L. Fleintech,, S.Shankar Narayan and A.M. 
Pelusi, [58-60], one as the order of the filer increases its step 
size decreases and results slow algorithm. Second problem 

is, the input signal of the highly correlated filter results large 
spread of eigen values of autocorrelation matrix which 
causes algorithm to slow down again. 
 The failure time analysis for LMS algorithms shown by 
Abel A et al [61]. A system failure may depend upon the 
occurrence of a large error and clumps of large errors. 
Poisson approximation has been used to study failure of the 
LMS algorithm in time domain and its three signed variants.  
For fast convergence affine projection algorithm has been 
described by K. Ozeki and T. Umeda [62]. Its faster version 
was given by S. L. Gay el at [63]. How faster convergence 
impacted the applications, was described by researcher S. G. 
Sankaran and A. A.  

 

 
Fig 3. Flow chart of NLMS algorithm 
 
 
 Beex [64]. It has also been seen that if the input signal is 
extremely correlated then there is always a trade-off between 
the convergence speed and computational complexity [65-
68]. 
 The effects of the power level estimate are incorporated 
in a data depends upon µ that appears explicitly within 
algorithm is proved by N.J Bershad and andIrvine [69]. 
Authors were also evaluated the transient mean and second-
moment behaviour of the modified LMS (NLMS) algorithm. 
It was evaluated by taking into account that explicit 
statistical dependence upon µ of the input data. Keeping all 
these points in mind the NLMS (Normalised Least Mean 
Square) algorithm introduced by F. F. Yassa [70]. This 
algorithm increased the convergence speed of LMS 
algorithm without using the estimates of the input signal 
correlation matrix. Here the basic parameters used for the 
NLMS shown. 
 NLMS were derived from the part of nonlinear 
stochastic gradient LMS algorithm. This is done by choosing 
normalized time varying step size parameter. This parameter 

reduces the next step that reduces mean square error after 
every iteration. Now to improve the convergence rate, a 
variable convergence factor uk has been employed. The 
equation become  
 
w(k+1)=w(k)+2µke(k)x(k)=w(k)+Δ˜w(k)                           (23) 
 
Table 5. Basic Parameters of NLMS 
Input parameters: 
 Initialization vector ∶    𝑤 𝑛 = 0,
Input vector:   𝑥 𝑛 ,    Desired output: 𝑑 𝑛  
 Step − size parameter: µ, Constant: 𝜀 , Filter order:𝑃 
Output Parameters: 
Filter output:𝑦 𝑛 , Coefficient vector: Procedure:𝑤 𝑛 + 1  
Computation Procedure (Real Valued Functions): 
1.     𝑦 𝑛 =  𝑤! 𝑛 𝑥 =  𝑤 𝑛 x! 𝑛  
 
2.     𝑒(𝑛)  =  𝑑(𝑛)  −  𝑦(𝑛) 

3.     𝑤(𝑛 +  1)  =  𝑤(𝑛)  +  
µ

𝜀 + 𝑥! 𝑛 𝑥 𝑛 𝑒(𝑛)𝑥(𝑛) 

Computation Procedure (Complex Valued Functions): 
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1.     𝑦(𝑛)  =  𝑤!(𝑛)𝑥(𝑛) 
2.     𝑒 𝑛 =  𝑑 𝑛 −  𝑦 𝑛  

3.     𝑤(𝑛 +  1)  =  𝑤(𝑛)    
µ

𝜀 + 𝑥! 𝑛 𝑥 𝑛 𝑥(𝑛) 𝑒∗(𝑛) 

 
 Where µk must be chosen to achieve faster convergence 
and to reduce the instantaneous squared error as much as 
possible.  
A priori knowledge of stability and convergence of the LMS 
adaptive filter algorithm requires the input power level to 
select the algorithm gain parameter µ. Since the input power 
level is usually one of the statistical parameter unknowns, it 
is normally estimated from the data received prior to 
beginning the adaptation process. Consider LMS recursion 
algorithm 
 
w(n +  1)  =  w(n)  +  2µ n e n x n                               (24) 
 
where step-size parameter varies in time. It has been 
observed that the filter length and power of the signal is 
highly influenced, convergence, stability and steady state 
behaviour of LMS algorithm. So 
 
µ n =  !

!!! ! ! !
=  !

!| ! ! |! 
                                                (25)                                                                                           

F 
rom above equation to find the recursion 

 

w n + 1 = w n +  
1

x! n x n e n x n                         (26) 

 
 The above equation is using a posteriori error 
minimization. Hence,  
 
w n +  1 =  w n +  !

!!!! ! ! !
e n x n                       (27) 

 
Where µ and ε are constants. Study of the first and second-
order behavior of Normalized Least Mean Square 
(NLMS) algorithm has been introduced by M. Tarrab and A. 
Feuer [71]. The LMS design was based on the statistics of 
input signal so a new design was presented by D. T. Slock 
[72]. This model analysed the NLMS and LMS algorithm 
for their convergence behaviour. Then S.C.Douglas and 
T.H.Y. Meng [73] proposed a nonlinear LMS algorithm 
where statistics parameters analysed were based on memory 
less nonlinearities.  
 A new NLMS algorithm was given by Emilio et al 
[74] .This new algorithm shows easy demonstration of the 
optimum value of adaptive constant in the LMS algorithm. 
This algorithm uses a value for the adaption constant that 
assure the fastest convergence. It also minimizes the MSE of 
the adaptive systems which is based on a simple Taylor’s 
expansion. Author S. kalluri [75] obtained a general 
nonlinear NLMS type algorithm by choosing flawless time 
varying step size that minimizes the next step mean square 
error after every iteration of the nonlinear LMS algorithm. 
 To control echo from speech signals a modified LMS 
algorithm has been analysed by J.Ensor and A. Lewis [76]. 
The results proved that the algorithm provide uniform 
speech band cancellation and lower misadjustment than 
LMS algorithm at same convergence rate with additional 
mathematics. 
 A new method based on posterior estimation has been 
defined by J. M. Górriz [77], where error was defined by the 

minimization of Euclidean distance between weight vectors. 
This provides all inclusive comparison between almost all 
adaptive algorithms like LMS, Modified LMS (M-LMS), 
Error Nonlinearity (EN-LMS) etc.The advantages of NLMS 
are; faster convergence, automatic time varying choice of the 
LMS step size parameter; steady state mean square error and 
good convergence speed of the algorithm.  
 To adapt individual filter parameters, individual 
convergence factors have been proposed by W.B. Mikhel 
[78]. The author has also worked on to adjust 
the convergence factors of individual parameter in real time. 
R.W.Harris [79] has used a technique; where for each weight 
of an adaptive filter with transversal realization carries a 
feedback constant. This is a new way for the implementation 
of LMS algorithm. 
 LMS algorithm is in demand because of its simplicity, 
robustness and best tracking capability. But there is always 
has a compromise with step size and misadjustment. As the 
step size increases stability decreases and as it decreases 
stability increases.  Jeronimo A. G has shown in his paper 
[80] that the filter weights depends on the spectra of input 
signals and additive noise and step size. This problem is 
overcome by Z.Shengkui[81] by combining many LMS 
filter with different steps. Using this method the combination 
of step size and misadjustment provides the better tracking 
capability for each weight to speed them up. 
 A variable step size (VSS) LMS algorithm introduced by 
Ting Lieu and Saeed Gazar[82] to assist the process of 
conflicting requirement. The large step size needed for fast 
convergence and small step size needed for misadjustment 
factor. Then a new algorithm for variable step size 
algorithms has been designed by Leonardo Rey [83] as 
robust Variable Step Size NLMS algorithm. This algorithm 
was based on the optimization of cost time dependent 
function to update the filter coefficient. This optimizes the 
square of the posterior error. A theoretical model for 
predicting the transient and steady-state behaviour has given 
and a proof of almost sure filter convergence were provided.  
 To improve the weakness of lastly developed variable 
step-size least mean- square (VSLMS) algorithm a new 
VSLMS has been proposed by Jeng-Kuang Hwang [84]. The 
algorithm was gradient based and took the average of the 
weights. The specific application found using this algorithm 
for colour input environment or system identification.  
Numerous variable step-size normalized least mean-square 
(VSS-NLMS) algorithms have been derived to solve the 
crisis of fast convergence rate or low excess mean-
square error in the past two decades. Hsu et al in their paper 
[85], proposed a new, easy to implement, nonparametric 
VSS-NLMS algorithm that make use of mean-
square error and the estimated system noise power to control 
the step-size update. This section is concluded using Table 
VI 
 
Table 6. Revolutionary TimefFor Variants of LMS 
Algorithm 
Year Author Contribution References 

 
1986 F. F. Yassa NLMS introduced [69] 

 
2002 Ting Lieu 

and Saeed 
Gazar 

Variable step size 
pre-filter bank 
algorithm 

[82] 
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2005 Jeronimo A Algorithm for 
convex 
combination of 
LMS transversal 
filter 

[80] 

2006 Z. Shengkui Modified LMS 
and NLMS with 
Variable Step Size 

[81] 

2012 Hsu-Chang 
Huang  

VSS-NLMS 
algorithm 

[85] 

 
 
4.2. LMS verses RLS (Recursive Least Square) 
There is another side of the coin too, which deals with the 
fast transversal RLS (Recursive Least Square) algorithms. 
But this algorithm has stability problems in practical 
implementation.  
 The objectives of LMS (Least mean squares) algorithms 
are minimization of sum of the squares of difference 
between the desired signal and model filter output [86]. 
Recursive least-squares (RLS) algorithms given the solution 
of the problem when new samples of incoming signals are 
received at each iteration [87-88].  The Recursive Least 
Square (RLS) algorithms are known to accompany fast 
convergence even when the eigen value spread of the input 
signal correlation matrix is large. These algorithms have 
excellent performance when working in time-varying 
environments [89-90]. All these advantages come with the 
cost of an increased computational complexity and some 

stability problems, which are not as critical in LMS-based 
algorithms. 
 Concluding this section, so many modified adaptive 
filtering algorithms has been discussed, those basically 
advanced version of LMS.  There are two ways to 
categorized them, first category keeps all those algorithm 
having simpler algorithm with less computational 
complexity and other category is concern about the advance 
and improved performance of existing algorithm. The 
simpler algorithm provides least complexity in 
implementation with the increasing cost of misadjustment 
and low convergence speed. The advanced and improved 
algorithms provide more computational complexity. 
 
 
5. Conclusion 
 
The presented paper has reviewed 50 years of adaptive filter, 
their structure, adaptive algorithm mainly Least Mean 
Square (LMS) and one of its variant Normalised Least Mean 
Square (NLMS). Considerable emphasis has been given to 
work reported in the development of Adaptive noise 
cancellation system.  
 
This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Licence  
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