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Abstract 
 

An objective function defined by minimum compliance of topology optimization for 3D continuum structure was 
established to search optimal material distribution constrained by the predetermined volume restriction. Based on the 
improved SIMP (solid isotropic microstructures with penalization) model and the new sensitivity filtering technique, 
basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the 
above procedures were written in MATLAB programming language, and the topology optimization design examples of 
3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including 
compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the 
topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger 
the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the 
topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering 
method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a non-
integer. The above modified variable density method could provide technical routes for topology optimization design of 
more complex 3D continuum structures in the future. 
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1. Introduction 
 
Topology optimization design is a computational method for 
achieving optimal material distribution without knowing the 
special shape of the structure in advance. Therefore, 
topology optimization can be used to develop great potential 
of new structure with high performance. The history of the 
topology optimization dates back to the truss theory 
proposed by Michell in 1904. At that time, the theory can 
only be applied to single working condition that depended 
on the strain filed and was not applicable in practical 
engineering [1]. In 1964, Dorn et al. proposed ground 
structure approach [2] that was applied into topology 
optimization. From then on, topology optimization had 
become a more active research field. In recent years, 
topology optimization theory of continuum structure [3] has 
developed rapidly. Many topology optimization methods 
including variable thickness method, variable density 
method, asymptotic structure optimization, independent 
continuum mapping method (ICM), level set, and nodal 
density method [4] have been proposed. Topology 
optimization methods have been applied in many fields. 
 Especially the variable density method has been 
successfully applied in many practical engineering projects 
because of its simple programming procedure and high 
efficiency in calculation competence [5]. Yang et al. 
transformed topology optimization problems into linear 
programming problems and then used the variable density 
method to design engine components [6]. With the 

development of many CAE software based on the variable 
density method, the engineering examples of topology 
optimization that are solved by numerical simulation 
methods have increased daily [7], [8], [9], [10], [11], [12]. 

 
 

2. State of the Art 
 

Numerical instability problems including chessboard and 
mesh dependence phenomenon are ubiquitous in topology 
optimization design based on variable density method [13]. 
Sigmund proposed a filtering radius method to solve this 
problem [14]. Zuo modified the previous filtering method 
[15]. Chen used an adjacent entropy filtering method based 
on graph theory to eliminate the chessboard and mesh 
dependence problems [16]. 
 The essence of topology optimization is to solve the 
extrema problem. Therefore, the development of topology 
optimization is inseparable from optimal mathematical 
algorithms. The advantage of the optimization criterion 
method (OC method) is fast convergence speed, however, 
this method might be difficult to deal with the complex 
structure under the conditions of different constraints [17]. 
In 1960, Schmit adopted mathematical programming theory 
to solve optimization problems of elastic structure under the 
condition of multiple load [18]. His research pushed the 
development and application of topology optimization 
algorithms. Traditional optimization methods are not 
applicable for these problems because mathematical models 
are complicated, nonlinear, random, and blurry in real 
optimization design problems. Therefore, many new 
algorithms, including simulated annealing method [19], 
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genetic algorithm [20], evolutionary algorithm [21], and 
neural network algorithm [22], [23], were presented. Based 
on the above modern methods, the global or approximately 
global solutions can generally be obtained. However, this 
will cost huge amount of calculation time. The minimum 
compliance problem in nonlinear programming can be dealt 
with by sequential quadratic programming (SQP) [24], [25] 
and moving asymptotes method (MMA) [26], [27]. 
Compared with SQP and MMA methods, the OC method 
has many advantages including good computation 
convergence and fast computation speed in topology 
optimization design. Hence, in this study, the OC method is 
used to solve the minimum compliance problem of the 
topology optimization model. 
 The remainder of this study is organized as follows. 
Section 3 establishes a 3D topology optimization model of 
continuum structure with the object function of minimum 
compliance and deduces the 3D finite element formulations 
by OC method. Section 4 studied the topology optimization 
design examples of 3D continuum structure with reserved 
hole and discusses the influence of mesh numbers, penalty 
factor, and filtering radius on results of topology 
optimization. Section 5 presents conclusions. 

 
 

3. Methodology 
 

3.1 Minimum Compliance Problem 
The minimum compliance problem of topology optimization 
design of the continuum structure constrained by volume 
fraction is expressed as follows: 
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where C(x) is compliance of structure. x is material pseudo-
density as the design variable. Ω is the given design domain. 
V* is the required optimal design volume. V0 is the original 
design volume.α is the volume fraction. 

 
3.2 Newly Improved SIMP Model 
The basic approach used to handle the problem of discrete 
variables in numerical calculation is to substitute continuous 
function for discrete function. The continuous function can 
generate many elements, and the continuous density of 
which is between 0 and 1. However, making this kind of 
structure material practical is difficult. To solve this problem, 
the penalty factor is usually introduced to suppress the 
appearance of intermediate-density element. By using 
variable density method and introducing penalty factor, the 
relationship between variable density xi and elasticity 
modulus Ei based on SIMP model is expressed as follows: 
 

]1,0[,)( 0 ∈== i
p
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where E0 is elasticity modulus of solid materials. p is the 
penalty factor. The evolved solid isotropic microstructures 
with penalization (SIMP) model are expressed as follows: 
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where Emin is the elasticity modulus of void material. To 
avoid the singularity of the stiffness matrix, the value is not 
zero as usual. The value is set to “0.001.” The improved 
SIMP model makes the penalty factor and elasticity modulus 
of void material mutually independent. Compared with the 
former model, the improved SIMP model has better 
convergence in computation [28]. 
 
3.3 Sensitivity Filtering 
Topology optimization model based on variable density 
method is always accompanied with numerical problems, 
such as mesh-dependence, checkerboard pattern, local 
extremum, and so on. To solve these problems, the common 
way is to introduce density-filtering method shown as 
follows: 
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where iv  is the volume of element. ijH is the weighting 

factor. iN  is the element set adjacent to element i and can be 
defined as 
 

{ }RjidistjNi ≤= ),(:                    (5) 
 
where the operator ),( jidist  is the center distance 
between element i and element j, and R is the filtering radius. 
The weighting factor ijH  is: 
 

),( jidistRHij −=                     (6) 
 
 Filtering density ix  is modified density. This factor is 
introduced into the SIMP model, and the formula can be 
deduced as follows: 
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3.4 Element Stiffness Matrix and Formulation of Finite 
Element 
Based on improved SIMP model, as indicated in Formula (7), 
sensitivity filtering method, and Hooke's Law, the 3D stress 
matrix of isotropic material element i is expressed as: 
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where 0

iD  is the stress matrix composed of unit Young’s 
modulus and can be expressed as: 
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where υ  is Poisson ratio of isotropic material. Based on 
finite element theory, the element stiffness matrix of elastic 
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solid is the volume integral of stress matrix )( ii xD  and strain 
matrix B, which can be expressed as follows: 

321
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where )3,2,1( =eeξ is the natural coordinate system of 
hexahedron element. Strain matrix B describes the 
relationship between the node displacement of elements and 
the strain. Based on SIMP model, the element stiffness 
matrix can be expressed as: 
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 Substituting Formula (9) into Formula (12), it can be 
further organized as: 
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where 
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 The global stiffness matrix is the collection of element 
stiffness matrix, which can be expressed as: 
 

0
11 )()()( iii

n
iii

n
i kxExkxK == Α=Α=                     (16) 

 
where n is the amount of elements. Based on the definition 
of the global stiffness matrix, Formula (16) can be further 
expressed as: 
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where 0

iK  is the global constant stiffness matrix that is 
composed of the element stiffness matrix. According to 
Formula (7), the matrix can be expressed as: 
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 By solving Formula (19), we can obtain the displacement 
vector of nodes )(xU . 
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where F is the force vector of nodes. 

 
3.5 Topology Optimization Model Based on Improved 
SIMP method 
The solution of minimum compliance problem is to find the 
distribution form of material density, which makes structural 
deformation minimum under the action of the specified load 
and constraint. Therefore, compliance of structure can be 
defined as: 
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By introducing the volume restriction, the minimum 

compliance problem can be further expressed as follows: 
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where density x  is determined by Formula (4).  

[ ]Tnvvv ,...,1= is the volume vector of elements. 
 

3.6 The Sensitivity Analysis of Structure 
Based on the improved SIMP model, sensitivity analysis 
should be indispensable in obtaining the solution to 
objective function. 

In Formula (21), the derivative of volume constraint 
function )(xv  with respect to design variable is: 
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. The mesh element used 

in the study is the cube element with unit volume. That is, 
1=== eji vvv . 

In Formula (21), the derivative of compliance with 
respect to design variable ex is: 
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In Formula (19), the derivative of total stiffness with 

respect to design variable ix is: 
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 Formula (25) can be further organized as: 
 

)()()()( 1 xU
x
xKxK

x
xU

ii ∂
∂−=

∂
∂ −                   (26) 

 
 Based on Formula (18), the equation can be expressed as: 
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 Combined with Formula (24), Formula (26) and Formula 
(27), it can be expressed as: 
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 Given that 0

iK  is the collection of element stiffness 
matrix, Formula (28) can be expressed as: 
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where )(xui is the displacement vector of element node. 

Because 0
ik  is positive definite, 0)( <

∂
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3.7 Optimization algorithm 
OC method is an indirect optimization method because it 
does not optimize the object function directly. The method 
makes K-T condition, which the optimal solution should 
meet in math as the guideline the most optimal structure 
should satisfy. The outstanding characteristic is with fast 
convergence speed and less iteration number. The K-T 
condition of optimization criteria method should satisfy 
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where λ  is Lagrangian multiplier. Formula (30) can be 
further expressed as: 
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 The large change of relative density from void to solid is 
not allowed. Therefore, moving limit m should be 
introduced into the design variable x. The iterative density 
can be further expressed as follows: 
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where m is the moving limit.η  is the damping coefficient 
ranging from 0 to 1. Introducing the damping coefficient and 
the moving limit aims to improve iteration convergence. 
Sigmund proposed m=0.2 and 5.0=η  [23]. In Formula 
(32), λ  is the only unknown quantity. λ  can be obtained 
in Formula (33) by dichotomy method.  
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In addition, the condition that convergence rule should 

meet is 
 

ε≤−
∞
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where ε  is the error limitation that is set to “0.001.” 

 
3.8 Procedure of Obtaining Solutions 
Based on MATLAB programming, we depict the whole 
solving flow chart shown in Figure 1 and provide specific 
explanations for each step. 
 

(1) Input of original data: maximum iteration number, 
material parameters (elastic modulus and Poisson 
ratio), coordinate of force acting point, coordinates 
of constraint node and freedom numbers 

(2) Definition of elemental stiffness matrix and 
integration of total stiffness matrix 

(3) Finite element analysis and calculation of the 
element nodal displacement 

(4) According to the above calculated displacement, 
calculating sensitivity, and objection function (compliance) 

(4) Sensitivity filtering method 
(5) To obtain the solution (Lagrange multiplier) of 

Formula (33) by bisection method and then obtain 
the new design variable density.   

(6) Convergence test is performed by Formula (34). If 
satisfied, the results (compliance, displacement, and 
nephogram of density distribution) will be the 
output; otherwise the solving step returns to Step 3, 
in which the density variable is updated to perform 
the finite element analysis. 
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Fig.1. Solving flow chart of 3D continuum structure topology 
optimization 

 
 

4. Result Analysis and Discussion 
 

4.1 Example Verification 
As is shown in Figure 2, the design domain is a 3D 
continuum cantilever beam with reserved hole. The length in 
x direction is 40 mm; the width in y direction is 20 mm; and 
the thickness in z direction is 10 mm. A cylinder hole with 
radius of 7 mm is in the center of the entire structure. The 
discrete structure is partitioned into 32×16×8 hexahedral 
elements. The left side boundary condition is fully fixed and 
the right side at the bottom of the beam is subjected to a 
concentrated line load 1 kN/m. The elastic modulus of 
material 10 =E  GPa, the volume fraction is 0.3, the penalty 
factor p=3.0, and the filtering radius r=1.5. The objective 

function is to minimize the compliance of the entire 
structure. The iteration results are shown in Table 1. 

 
Fig. 2. Initial design domain of the 3D continuum cantilever beam 

 
Table 1 presents the topology optimization results in the 

iteration process. From the table, we can see that when the 
iteration step reaches step 5, the shape of the topology 
structure is unformed. When the iteration process reaches 
step 50, the structure is fully shaped into many supporting 
bars in the local region. With the increase of iteration 
numbers, the structure form has only a subtle change. 

To reflect the change trend of compliance, maximum 
displacement, and density index with the increase of the 
iteration numbers, Figures 3(a), (b), (c) are drawn 
respectively. Herein, the density index is defined as the ratio 
of element numbers of which density is less than 0.01 and 
greater than 0.99 to the total element numbers. This index 
reflects the extent that the whole element density tends to be 
0 or 1. When the iteration number begins to reach 20, the 
compliance and the maximum displacement decline sharply, 
whereas the density index climbs rapidly. As the iteration 
number continues to increase, all the results (compliance and 
maximum displacement) have only subtle changes. From the 
above density nephogram change and iteration results of 
various index, we can conclude that the presented numerical 
method is stable, reasonable, and with good convergence. 

 
Table 1. Topology optimization results in the process of iterations 

Iteration 
numbers 5 10 20 50 100 175 

3D cubic 
nephogram       

Side-view 
nephogram       

 
Note:  

 is density scale, which is applicable to all the density nephogram in this 
study. 
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(b) Maximum displacement 
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(c) Density index 
Fig. 3. Variation of compliance, maximum displacement, and density 
index with iteration numbers 

 
 
 
 
 

 
4.2 Mesh Dependency Analysis 
To analyze the influence of element numbers on 
optimization results and computation time, five cases with 
mesh numbers 16×8×4, 20×10×5, 32×16×8, 40×20×10, 
48×24×12 are discussed. The penalty factor is p=3.0 and 
filtering radius is r=1.5. 

From Table 2, we can see that if the mesh numbers are 
too coarse or too fine, the calculated compliance and the 
maximum displacement are both too large. In special cases, 
when the mesh is 32×16×8, the optimal compliance is the 
minimum in five cases. As the mesh numbers increase, 
iteration steps increase and computation time becomes 
longer. Meanwhile, the density index becomes larger, that is, 
the element number ratio of the intermediate density 
decreases. In addition, the mesh numbers do not affect the 
structure form significantly. Based on overall consideration 
of the optimization results and calculating cost, the 
reasonable mesh numbers in this study are 32×16×8.  

 
4.3 Penalty Factor Analysis 
To analyze the influence of different penalty factors on the 
optimization results and computation time, we studied five 
cases with penalty factors 2.0, 2.5, 3.0, 3.5, and 4.0. Herein, 
the mesh number is 32×16×8 and filtering radius r=1.5 in 
five cases. 

As is shown in Table 3, with the increase of penalty 
factor, the calculated compliance, maximum displacement, 
and density index become larger. Furthermore, when the 
penalty factor is non-integer, iteration steps grow apparently 
and computation cost increases. When the penalty factor is 
an integer, the iteration number is relatively small, and the 
larger the penalty factor is, the faster the convergence time 
will be. However, the optimal compliance and the maximum 
displacement both increase, which suggests that the 
optimization effect declines. Based on an overall 
consideration of optimization results and calculating cost, 
the reasonable penalty factor in this example should be 3.0. 

 
 
 

Table 2. Final topology optimization results of different numbers of mesh elements 
Mesh partition 16×8×4 20×10×5 32×16×8 40×20×10 48×24×12 
Iteration step 49 159 175 170 475 

Compliance (N·m) 1836.01×10-3 1787.01×10-3 1774.25×10-3 1931.22×10-3 2077.22×10-3 
Maximum 

displacement (m) 0.2345×10-3 0.2267×10-3 0.1998×10-3 0.2400×10-3 0.2530×10-3 

Density index 0.9219 0.9450 0.9819 0.9915 0.9942 

3D view nephogram      

Side-view nephogram      
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Table 3. Final topology optimization results of different penalty factors 
Penalty factor 2.0 2.5 3.0 3.5 4.0 
Iteration step 285 249 175 315 178 

Compliance (N·m) 1472.35×10-3 1635.32×10-3 1774.25×10-3 1895.25×10-3 2006.01×10-3 
Maximum 

displacement (m) 0.1649×10-3 0.1835×10-3 0.1998×10-3 0.2158×10-3 0.2270×10-3 

Density index 0.9663 0.9824 0.9819 0.9888 0.9917 

3D view nephogram      

Side-view 
nephogram      

 
 
4.4 Filtering Radius Analysis 
To analyze the influence of different filtering radius on the 
optimization results and computation time, four cases with 
the filtering radius 1, 1.5, 2.0, 3.5 are discussed. Herein, the 
mesh number is 32×16×8 and penalty factor p=2.0 in five 
cases. 

Table 4 shows that with the increase of filtering radius, 
compliance, maximum displacement, iteration number 

increase. When filtering radius is 1.0, the local region of the 
structure appears as chessboard phenomenon.  

As the filtering radius is larger than 1.0, the optimal 
structure form no longer appears as a chessboard problem. 
When filtering radius is too large or too small, the density 
index will increase. As the filtering radius is 3.5, the shape 
of the structure changes sharply. Meanwhile, the compliance 
and the maximum displacement of structure become larger. 
Based on overall consideration of results and calculating 
cost, the reasonable filtering radius in this example is 1.5. 

 
Table. 4. Final topology optimization results of different filtering radius 

Filtering radius 1.0 1.5 2.0 3.5 
Iteration step 22 175 261 306 

Compliance (N·m) 1472.35×10-3 1774.25×10-3 2059.27×10-3 3096．51×10-3 
Maximum displacement 

(m) 0.1649×10-3 0.1998×10-3 0.2331×10-3 0.3510×10-3 

Density index 0.9663 0.9819 0.9790 0.9800 

3D view nephogram     

Side-view nephogram     

 
 
5. Conclusion 
 
In this study, the topology optimization model of 3D 
continuum structure with objective function of minimum 
compliance and design variable of material distribution is 
established. By introducing the sensitivity filtering method 
and the improved SIMP model, the OC iteration equation of 
finite element analysis is deduced. By MATLAB 
programming, the 3D continuum structure with reserved 
hole is designed to obtain optimal topology structure shape. 
Based on the above analysis, we obtain the following 
conclusions: 

(1) Compared with the previous topology optimization of 
2D continuum structures, the presented method of topology 
optimization of 3D continuum structure with reserved hole 
can enlarge the application for more complicated structures.  

(2) Too fine or too coarse mesh number will greatly 
make the compliance and the maximum displacement larger. 
In addition, the finer the mesh is, the more the iteration step 
is, and the computation cost will increase. Meanwhile, the 
density index will become larger, which means that the 
intermediate density decreases. Furthermore, the mesh 
number affects the shape form of structure less. 

(3) As the filtering radius is larger than 1.0, the topology 
shape will no longer appear as a chessboard problem, which 
suggests that the presented sensitivity filtering method is 
valid. However, the larger the filtering radius is, the longer 
the computation time will be. Therefore, selecting an 
appropriate filtering radius can not only improve the optimal 
effect but also save the computation cost. 

(4) The penalty factor should be an integer because the 
iteration step increases greatly when the value is a non-
integer. 
 

______________________________	
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