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Abstract 
 
The main objective of this paper is to design an adaptive output feedback control for a class of uncertain nonlinear 
systems using only one Single-Hidden-Layer (SHL) Neural Networks (NN) in order to eliminate the unstructured 
uncertainties. The approach employs feedback linearization, coupled with an on-line NN to compensate for modelling 
errors. A fixed structure dynamic compensator is designed to stabilize the linearized system. A signal, comprised of a 
linear combination of the measured tracking error and the compensator states, is used to adapt the NN weights. The 
network weight adaptation rule is derived from Lyapunov stability analysis, and guarantees that the adapted weight 
errors and the tracking error are bounded. Numerical simulations of both nonlinear systems, Van der Pol example and 
tunnel diode circuit model, having full relative degree, are used to illustrate the practical potential of the proposed 
approach. 
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1.  Introduction 
 
Nonlinearities exist in a wide range of physical systems and 
devices, such as chaotic systems, electromagnetism, 
mechanical actuators, electronic relay circuits and other 
areas. Unfortunately, such nonlinearity often limits system 
performance. A fundamental ambition for many research 
efforts in control theory is the development of a powerful 
control for highly uncertain nonlinear systems, to name a 
few, that are poorly modelled and influenced by the 
parameter variations. 

In recent decades, adaptive control design has been 
significantly advanced for nonlinear systems,                             
e.g., Brunovsky systems [3,9,15], feedback-linearized 
systems [2,25,30], and strict-feedback systems [32,35,38], 
and various controllers have been proposed using different 
techniques, namely, the sliding-mode control or variable 
structure control [26,31], adaptive backstepping control 
[13,36], and exact state feedback linearization control [5,12]. 
The three approaches have their own merits whereas with 
some defects. For example, the sliding-mode control system 
is immune to parameters variation and disturbances while it 

has chattering problem. The adaptive backstepping control 

specifically applied for triangular systems can deal with 
matched or unmatched parameter uncertainties whereas it 
needs more calculation and longer settling time. The exact 
state feedback linearization control is among the most 
successful techniques to achieve input/output decoupling 
and high dynamic performance but sensitive to parameter 
variations so any mismatch could cause system instability. 

The main drawback of such methods is that they rely on 
an exact model of the systems to be controlled with precise 
parameters. Taking advantage of this fact, adaptive output 
feedback control is expected to exhibit more excellent 
performance, because it requires little knowledge about 
system mathematical model and parameters. Consequently, 
it has been recognized as a powerful methodology for 
designing    feedback     controllers     for    highly   uncertain  
nonlinear systems  with  parametric  uncertainties.  Different  
adaptive state feedback and output feedback control 
algorithms have been developed for a reasonably large class 
of nonlinear systems under various uncertain 
nonlinearities(e.g., see [16,17,35]). Thus, output feedback 
control of nonlinear uncertain systems, using a high-gain 
observer, was introduced in [1] and [11]. A solution to the 
output feedback stabilization problem for systems in which 
nonlinearities depend only upon the available measurement 
was given in [28]. In [20] and [22], we find backstepping-
based approaches to adaptive output feedback control of 
uncertain systems that are linear with respect to unknown 
parameters. Hence, development of an alternative approach 
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to treat the intelligent tracking control of uncertain nonlinear 
systems is highly desirable.  

Both neural network systems [4,5,35] and fuzzy logic 
systems [26,31,38] have been successfully applied in recent 
years for several engineering applications to universally 
approximate the unstructured uncertainties of dynamic 
systems. Many important adaptive neural-network-based and 
fuzzy-based control schemes have been developed to treat 
the robust control of uncertain nonlinear systems and various 
stable performance criteria are guaranteed by theoretical 
analyses [8,17,18,33,37].  A key assumption in most of these 
methods is that all the states of the plant are available for 
feedback. Recently, observer-based adaptive fuzzy-neural 
control schemes [23,34] are proposed for a certain class of 
unknown nonlinear dynamical systems. Adaptive neural 
network output feedback schemes with high-gain observer 
[16,29] are developed for the tracking control of a general 
class of nonlinear systems. Another method that involves 
design of an adaptive observer using function approximators 
and backstepping control can be found in [5,10]. In [2] and 
[19], adaptive state and output feedback neurocontrol is 
developed for full relative degree nonlinear systems. 

The contribution of the present correspondence is to 
address the problem of designing an intelligent adaptive 
output feedback tracking controller for a class of uncertain 
nonlinear systems for which the output has full relative 
degree. The developed control scheme is based on an 
adaptive neural network system that is employed to for the 
modelling errors, and a linear error observer that is used to 
estimate the derivative of output. Using an approximate 
feedback linearizing control law, the nonlinear dynamics are 
inverted and the obtained tracking-error dynamics are almost 
linear. Taking advantage of this fact, we propose a linear 
observer for the almost linear error dynamics. The estimates 
provided by this observer are used as teaching signals to the 
NN. Ultimate boundedness is shown through Lyapunov’s 
direct method. The theoretical results are illustrated in the 
design of a controller for both nonlinear systems having full 
relative degree, tunnel diode circuit (TDC) model and Van 
Der Pol (VDP) example. 

The rest of this correspondence is organized as follows: 
In Section (2), the tracking control problem is formulated. 
Section (3) proposes a novel Output Feedback controller 
design applied to control the uncertain nonlinear system. 
Section (4) develops the controller design. NN augmentation 
is detailed in section (5). In Section (6), the rigorous stability 
analysis is presented to guarantee the boundedness of the 
tracking error elements. In Section (7), a simulation example 
is made. The last section is devoted to some concluding 
remarks. 
 
2.  Problem Statement 
 
Consider the dynamics of an observable and stabilizable 
nonlinear SISO system given by the following equations: 
 

  

!x = f x,u( )
y = h x( )                                          (1) 

 
where	
   nx∈ℜ 	
   is the state of the plant,	
   u∈ℜ , and y∈ℜ 	
  
are the input (control) and output (measurement) signals, 
respectively.	
  	
  

Assumption.1:	
   The functions	
   1n nf : +ℜ →ℜ 	
   and	
  
nh :ℜ →ℜ 	
  are sufficiently smooth partially known, and the 

output has full relative degree	
   r 	
   for all	
   ( x,u ) Ω∈ ×ℜ 	
  
where	
   nΩ ⊂ℜ .	
  

Then following [29], there exists a mapping that 
transforms the system in (1) into the so-called normal form: 

 

    

!ξi = ξi+1, i = 1,...,r −1
!ξr = h ξ ,u( )
ξ1 = y

⎧

⎨
⎪⎪

⎩
⎪
⎪

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  (2)	
  

 
where	
   ( ) ( r )

fh ξ ,u .hL= 	
   are the Lie	
   derivatives, 

and [ ]1
T

rξ ξ ... ξ= .	
  
The objective is to synthesize a feedback control law that 
utilizes the available measurement y so that y(t) tracks a 
smooth bounded reference trajectory  yc(t) with bounded 
error. 
 

 
3.  Controller Design 
 
3.1.  Feedback Linearization 
Feedback linearization is approximated by defining the 
following control input signal: 
	
  

( )1ˆu h y,v−= 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3) 
	
  
where v  is defined as: 
	
  

( )ˆv h y,u= 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4) 
	
  
and is commonly referred to as a pseudocontrol. The 
function	
   ( )ĥ y,u represents the best available approximation 

of ( )h y,u . Then, the system dynamics can be expressed as:  
 

Δ+= vy r )(                                                                    (5) 
 
where 
 

1 1
1 1 1 1
ˆ ˆ ˆΔ(ξ ,v ) h(ξ ,h (ξ ,v )) h(ξ ,h (ξ ,v ))− −= − 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  (6) 

	
  
is the inversion error. The pseudocontrol is chosen to have 
the form: 
 
 

( )r c
c d adv y u u= + − 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  (7) 

	
  
where ( )r

cy  is the rth derivative of the input signal, generated 

by a stable command filter, c
du  is the output of a linear 

dynamic compensator, adu  is the adaptive control signal 
designed to cancel Δ . 
With (7), the dynamics in (5) reduce to 
 

( ) ( ) Δr r c
c d ady y u u= + − + 	
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From (6), notice that	
  Δ	
  depends on	
   adu 	
   through v.	
  We 
will design adu  to approximately cancel	
  Δ. Therefore, the 
following assumption is introduced to guarantee the 
existence and uniqueness of a solution for adu  [27].	
  
 
Assumption.2. The mapping adu Δ→ 	
   is a contraction over 
the entire input domain of interest. 
A contraction is defined by the condition: 1adΔ / u∂ ∂ < .

	
  
	
  Using (6), this reduces to 
 

1 1
^

^
ad ad

Δ ( h h ) u v h / u
u u v u h/ u

∂ ∂ − ∂ ∂ ∂ ∂= = − <
∂ ∂ ∂ ∂ ∂ ∂

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  	
  (9)	
  

 

Condition (9) is equivalent to the following requirements on 
ĥ : 	
  

1

2 0
2

^

^

h h)sgn sgn ;
u u

h
h u) .
u

⎛ ⎞∂ ∂⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∂⎛ ⎞

⎜ ⎟∂ ∂⎝ ⎠∞ > > >
∂

	
  

 
where the first condition means that control reversal is not 
allowed, and the second condition places a lower bound on 
the estimate of the control effectiveness in (4). 
 

	
  
3.2.  Dynamic Compensator Design  
 
Define the output tracking error as 

  
!y = yc − y . Then the 

dynamics in (8) can be rewritten as: 
	
  

Δ−+−= ad
c
d

r uuy )(~                                                      (10) 

	
  
For the case Δ = 0, the adaptive term adu  is not required 

and the error dynamics in (10) reduce to  
 

   !y
( r ) = −ud

c 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (11) 

	
  
The following linear compensator is introduced to stabilize 
the dynamics in (11): 

  

!η = −Aη + bc"y

ud
c = ccη + dc"y

⎧
⎨
⎪

⎩⎪
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   1rη −∈ℜ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (12)	
  

 
Note that	
   η 	
   needs to be at least of dimension	
   (r - 1)	
   [6]. 
This follows from the fact that (11) corresponds to error 
dynamics that have r poles at the origin. One could elect to 
design a compensator of dimension ≥ r	
  as well. In the future, 
we will assume that the minimum dimension is chosen.  
 
	
  
	
  
	
  

3.3.  Tracking Error Signal Analysis  
 
Returning to (10), notice that the vector 

   
e = !y !"y ... !y r−1( )⎡

⎣⎢
⎤
⎦⎥

T

	
   mutually with the compensator 

state η 	
   will obey the following dynamics, referred to as 
tracking error dynamics: 
	
  

⎪⎩

⎪
⎨
⎧

=
Δ−+=

ECz
ubEAE ad ][!

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (13) 

	
  
where	
   z 	
  is the vector of available measurements. 
Reminder that: 
 

[ ] [ 0]T TT T TE e η ,    b b= = 	
  

0
0

c c

c c

A d bc bc c
A ;     c ;

b c A I
− −⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(14) 

	
  
0 1 0 0

0 1
0 0 1 0

0 0

0 0 1
1 0

0 0 0 0

T...
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A ;b ;c
...
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⎡ ⎤ ⎡ ⎤⎜ ⎟
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⎣ ⎦ ⎣ ⎦⎜ ⎟⎝ ⎠

M O O O M
M M

O
	
  

	
  Noting that cA , cb , cc and cd 	
   in (12) should be designed 

such that A 	
  is Hurwitz. 
 
	
  

4.	
  	
  	
  Design	
   and	
   Analysis	
   of	
   an	
   Observer	
   for	
   the	
  
Error	
  Dynamic	
  

 
For the full-state feedback application [7,14,21], Lyapunov-
like stability analysis of the error dynamics in (13) results in 
update laws for the adaptive control parameters in terms of 
the error vector E . In [14,19,21], adaptive state observers 
are used to provide the necessary estimates in the adaptation 
laws. However, the stability analysis was limited to second-
order systems with position measurements. To rest these 
assumptions, we propose a simple linear observer for the 
tracking error dynamics in (13) and show through 
Lyapunov’s direct method that the adaptive part of the 
control signal ( adu ) can compensate for the inversion error 

)(Δ , if the output of this observer is used as an error signal 
for the adaptive laws.  

A minimal-order observer of dimension (r - 1) may be 
designed for the dynamics in (13). To this end, consider the 
following linear observer for the tracking error dynamics in: 

   

!̂E = AÊ + K(z − ẑ)
ẑ = CÊ

⎧
⎨
⎪

⎩⎪
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (15)	
  

	
  where K is a gain matrix, and should be chosen such that	
  
( )A KC− 	
  is asymptotically stable, and z is defined in (13).	
  
The following remark will be useful in the sequel. 
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Theorem 1. Equation (15) provides estimates only for the 
states that are feedback linearizable and not for the states 
that are associated with the internal dynamics. 
Let	
  	
  
 

  
!A = A− KC,

	
  	
  	
  
  !E = Ê − E

	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (16)	
  
	
  

Then, the observer error dynamics can be written
	
  	
  

  
!"E = !A !E − b [ uad − Δ ]

	
  	
  
	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (17) 
 
 
5.  SHL NN Approximation of the Inversion	
  Error 
 
5.1.  NN Approximation 
 
Given 1Nx ℜ∈ , an SHL NN has an output given by 
	
  

2 1

1 1

31

N N

i i j jk k nj mi
j k

y m σ n x θ θ

i ,...,N
= =

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
=

∑ ∑

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (18)	
  

 

where (.)σ is activation function, njk are the first-to-second 
layer interconnection weights, mij are the second to third	
  
layer interconnection weights, N2 is associated with the	
  
number of neurons in the hidden layer, njθ 	
  and miθ 	
  and are 
bias terms. 

The following theorem extends these results to map the 
unknown dynamics of an observable system from available 
input-output history [7]. 

 

Theorem 2: Given a compact set 1+⊂ nRD and *∈ , the 
model inversion error ),( vξΔ can be approximated over D  
by an SHL NN 

 
T TΔ( x,u ) M σ(Ψ µ ) ( d ,µ ),= +∈ 	
  	
   *∈ <∈ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (19)	
  

 
using the input vector 
 

1 0
TT T * *

d dµ( t ) v ( t ) y ( t ) , µ µ ,µ⎡ ⎤= ≤ >⎣ ⎦                 
(20) 

 
where	
  	
  	
  	
  	
  	
  

	
   [ ]1 1 TT
dv ( t ) v( t ) v( t d ) ... v( t ( n r )d )= − − − − 	
  	
  	
  	
  

[ ]1 1 TT
dy ( t ) y( t ) y( t d ) ... y( t ( n r )d )= − − − −  

with n1 ≥ n, d > 0	
   	
   denoting time-delay and	
   *µ 	
   being a 
uniform bound for all ( x,u ) D∈ .  
 

	
  
5.2.  Adaptive Control 
 
The adaptive signal is chosen to be the output of an SHL NN 
 

T T
ad

ˆ ˆu M σ(Ψ µ )= 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (21) 
	
  
where	
   M̂ 	
   and	
   Ψ̂ 	
   are estimates of	
   M 	
   and	
   Ψ 	
   that are 
updated according to the following adaptation laws: 
 

   

⌢"Ψ = −G[ 2µÊT PbM̂ T ′
⌢
Ψ + k(

⌢
Ψ −Ψ 0 )]

"̂M = −F [ 2( ⌢σ − ⌢σ '
⌢
Ψ Tµ )ÊT Pb + k( M̂ − M0 )] 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(22) 
	
  
in which 0M 	
  and 0Ψ 	
  are	
   initial values of the NN weights, 

0( )Tσ̂ σ Ψ µ= , σ̂ ' 	
   denotes the Jacobian matrix, P 	
   is the 
solution of the Lyapunov equation	
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  (23) 

	
  
for some 0Q > , 0k >  and	
   F is adaptation gain matrices. 

Notice that in (21), there is an algebraic loop, since	
   µ , 
by definition, depends upon uad through v, see (20). 
However, with bounded squashing functions, this algebraic 
loop has at least one fixed-point solution. 

Using (19) and (21), the error dynamics in (13) can be 
formulated as: 

 

⎪⎩

⎪
⎨
⎧

=
∈−Ψ−Ψ+=

ECz
MMbEAE TTTT ])()ˆ(ˆ[ µσµσ!

	
  	
  	
  	
  	
  	
  	
  	
  (24) 

	
  
Define	
  
	
  

  
!M = M̂ − M , 	
  	
  	
    

!Ψ =
⌢
Ψ −Ψ , 	
  	
  	
  	
  

   

!Z =
!M 0
0 !Ψ

⎡

⎣
⎢

⎤

⎦
⎥ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(25)	
  
 
and note that 
 

  
M̂ < !M + M* , 	
  	
  	
    

⌢
Ψ

F
< "Ψ

F
+Ψ *

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (26) 

	
  
where	
   *M 	
  and	
   *Ψ 	
  are the upper bounds for the weights in 
(19). 
 

*M̂ M ,< 	
  	
  	
  	
  
*

F
Ψ̂ Ψ< 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (27) 

	
  
The subscript	
   F denoting the Frobenius norm.	
  	
  

	
  With (26), the representation 
	
  

T T T T
ad

ˆ ˆu Δ M σ(Ψ µ ) M σ(Ψ µ )− = − −∈	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (28)	
  

 

allows for the following upper bound for some computable	
  
,1α 2α : 

	
  

   
uad − Δ ≤α1

!Z
F
+α 2 , 	
  	
  	
   1 0α ,> 	
  	
   2 0α ,> 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (29) 
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For the stability proof, we will need the following 
representation: 
 

  

M̂ Tσ (
⌢
Ψ Tµ )− M Tσ (Ψ Tµ ) = "M T ( ⌢σ − ⌢ ′σ .

⌢
Ψ Tµ )

+ M̂ T ⌢ ′σ .
⌢
Ψ Tµ + χ 	
  

where	
  	
  
	
  

   χ = !M T ⌢ ′σ .Ψ Tµ − M T ∂( !Ψ Tµ)2 	
  
	
  
Such a representation is achieved via Taylor series 

expansion of	
   ( )Tσ Ψ µ 	
   around the estimates	
   TΨ̂ µ 	
   (refer to 
[24] for more details).	
  

With the bound in (20), a bound for	
   ( )χ−∈ 	
   over a 
compact set can be presented as follows [24]: 

 

   
x− ∈ ≤ γ 1

!Z
F
+ γ 2 , 	
  	
  	
  	
   1 0γ ,> 	
  	
  	
   2 0γ > 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (30) 

	
  
where	
   1γ 	
  and	
   2γ 	
  are computable constants,	
   1γ depends upon 

unknown constant	
  
*µ , and 2γ 	
  upon	
  

*∈ . Thus, the forcing 
term in (24) can be written as: 
 

	
     uad − Δ = !M T ( ⌢σ − ⌢ ′σ .
⌢
Ψ Tµ)+ M T ⌢ ′σ .

⌢
Ψ Tµ + χ− ∈ 	
  	
  	
   (31) 

 
 
6.	
  	
  Stability	
  Analysis	
  

 
In this section, we confirm through Lyapunov’s direct 

method that if the initial errors of the variables   E
T , !ET , !M , 

and  !Ψ  belong to a prescribed compact set, then they are 
eventually bounded. We will denote the composite error 
vector  

 

  
ζ = ET !ET vec !ZT⎡

⎣⎢
⎤
⎦⎥

T

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (32) 

Recall that (19) introduces the compact set D over which the 
NN approximation is valid. From (19), it follows that 
 

T TT T
Dx x u D ω ξ u Ω⎡ ⎤ ⎡ ⎤= ∈ ⇔ = ∈⎣ ⎦ ⎣ ⎦ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (33) 

	
  
where	
   ( ), (.)DΩ Φ D  Φ= 	
   being introduced in (2). The set	
  

DΩ 	
  can be viewed	
  as	
   D ξ uΩ Ω Ω ,= ×  where ξ uξ Ω , u Ω∈ ∈ 	
  
all being compact sets. Notice that the static map in (3) and 
(4) ensure that v vv Ω ,Ω∈ 	
   being a compact set. The 

relationship in (7) and the boundedness of c
du ,  as a stabilizer 

of (11), ensure that ηη Ω ,∈  and 
ẐẐ Ω ,∈  these two sets 

being compact as well. Also notice that since the observer in 
(15) is driven by the output tracking error 

  
!y = yc − y 	
   and 

compensator states	
   η,  having	
  
cξ c yξ Ω , y Ω ,∈ ∈ 	
  

ηη Ω ,∈ implies that 
ÊÊ Ω ,∈ 	
  the latter being a compact set.	
  

The vector	
   ζ 	
  in (32) can be viewed as a function of the 
state variables	
   ˆ ˆξ , η, E, Z , the command vector 

   
yc = yc !yc ... yc

( r−1 )⎡
⎣⎢

⎤
⎦⎥

T

	
  and the constant matrix Z 	
  

	
  
( )c

ˆ ˆζ F ξ , y , η, E, Z , Z= 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (34)	
  
	
  

where	
  
0

0

M̂
Ẑ

Ψ̂

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

	
  and	
   0
0
M

Z
Ψ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

.	
  	
  

	
  
The relation in (34) represents a mapping from the original 
domains of the arguments to the space of the error variable 
 

c ˆ ˆξ y η Z ζE ZF :Ω Ω Ω Ω Ω Ω Ω× × × × × → 	
   	
   (35) 
 

Thus, (2), (33), and the implicit dependence in (34) 
ensure that	
   ζΩ 	
   is a bound set. Introduce the largest ball, 

which is included in	
   ζΩ 	
  in the error space 
 

{ }RB ζ . ζ R ,= ≤ 0R > 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (36) 
 
For every Rζ B ,∈  we have x D∈ 	
  where	
   D 	
  is the set over 
which the NN approximation has been defined. 
 
Assumption .3.  Assume  
 

M

m

ΓR γ γ
Γ

> ≥ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (37)	
  

	
  
where MΓ 	
   and mΓ 	
   are the maximum and minimum 
eigenvalues of the following matrix:	
  
	
  

   

Γ = 1
2

2P 0 0 0
0 2 !P 0 0
0 0 F −1 0
0 0 0 G−1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(38)	
  
	
  
and	
   γ 	
  is defined as:	
   1 2 3( )γ max C , C , C= .	
  
	
  
Noting that 
	
  

2 2 2
2 2

1 2min

Pb γ k Z
C ,

λ (Q )
+ +

=
−

	
  

   
C2 =

Pb
2
γ 2

2 + k2
2 + Z

λmin( !Q )− 2
, 	
  

2 2 2
2 2

3 22
1 12

Pb γ k Z
C ,k k γ Pb

+ +
=

⎡ ⎤− − ⎣ ⎦
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where	
  	
  
	
  

22 2 2
0 0 1 12

2 F

kZ M M Ψ Ψ ,k k γ Pb ,⎡ ⎤⎡ ⎤= − + − > +⎢ ⎥⎣ ⎦ ⎣ ⎦
	
  

	
  

   
k1 =Θα1 + Pb γ 1 ,k2 =Θα 2 + Pb γ 2 ,Θ = Pb + !Pb 	
  
	
  
and	
     !P 	
   satisfies   

!AT !P + !P !A = − !Q  for some	
      
!Q > 0 	
   with 

minimum eigenvalues	
  
   λmin( !Q) > 2.  

Assumption 3 may be interpreted as implying both an 
upper and lower bound for the adaptation gains. Define 

( ( ) ( )) ( ( ) ( ))max max min minγ max λ F , λ G , γ min λ F , λ G ,= = 	
   and	
  

   λ = max(λmax (P), λmax ( !P)), 	
   and	
  
   λ = min(λmin(P), λmin( !P)), 	
  

where	
   (.)λ 	
  denotes the eigenvalue. 
Then, an upper bound for the adaptation gains results 

when	
   2 1λ γ > 	
   and	
   2 1λγ > 	
   for which the relation in (37) 

reduces to 2 2(2 )γ R / γ λ< . A lower bound for the adaptation 

gains when	
   2 1λ γ < 	
  and 2 1λγ < , for which (37) reduces to 
22 2γ γ / ( R λ )> . 

 
Theorem 3: Let the assumptions 1-3 hold, and let 
( ) 2minλ Q > 	
   for	
   Q 	
   introduced in (23). Then, if the initial 

errors belong to the compact set αΩ , defined in (49), the 
feedback control law given by (3) and (7), along with (22), 
guarantees that the signals   E, !E, !M 	
  and	
    !Ψ 	
   in the closed-
loop system are ultimately bounded.  
 
Proof: Consider the following Lyapunov function for the 
system in (17) and (24):	
   
 

   
V = ET PE + !ET !P !E + 1

2
!M T F −1 !M + 1

2
tr( !Ψ TG−1 !Ψ ) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

(39) 
 
The derivative of along (17) and (24) will be 
 

   

!V = −ET PE − "ET "Q "E + 2ET Pb[uad − Δ]− 2 "ET "Pb[uad − Δ]

  + "M T F −1 "!M + tr( "Ψ TG−1 "!Ψ ).
	
  

 
With the definition of	
     !E = Ê − E 	
   and (31), this can be 
written as:	
  
	
  

   

!V = −ET PE − "ET "Q "E + 2ET Pb[vad − Δ]− 2 "ET "Pb[uad − Δ]

+ 2ÊT "Pb[ "M T ( ⌢σ − ⌢ ′σ .
⌢
Ψ Tµ)+ M̂ T ⌢ ′σ .

⌢
Ψ Tµ + χ− ∈]

− 2 "ET ( "Pb + Pb )[uad − Δ]+ "M T F −1 "!M + tr( "Ψ TG−1 "!Ψ )

	
  

	
  
Substituting the adaptive laws implies	
  
	
  

   

!V = −ET PE − "ET "Q "E + 2ÊT Pb[χ− ∈]
      − 2 "ET ( "Pb + Pb )[uad − Δ]

      − k "M T F −1( M̂ − M0 )− k.tr[ "Ψ T (
⌢
Ψ −Ψ 0 )].

	
  

 

Using upper bounds from (29) and (30), the derivative of the 
Lyapunov function candidate can be upper bounded as: 
 	
  

   

!V ≤ −λmin(Q) E
2
− λmin( "Q) "E

2

      + 2 Pb Ê [γ 1
"Z

F
+ γ 2]+ 2Θ "E [α1

"Z
F
+α 2]

      − k
2
"M

2
− k

2
M̂ − M0

2
+ k

2
M − M0

2

      − k
2
"Ψ

F

2
− k

2
⌢
Ψ −Ψ 0 F

2
+ k

2
Ψ −Ψ 0 F

2

	
  

	
  
where the following property for matrices has been used: 

   
tr !N T ⌢Ψ −Ψ 0( )⎡
⎣

⎤
⎦ =

1
2
!Ψ

F

2
+ 1

2
⌢
Ψ −Ψ 0 F

2
− 1

2
Ψ −Ψ 0 F

2
	
  

	
  
Further 
	
  

   

!V ≤ −λmin(Q) E
2
− λmin( "Q) "E

2

      + 2 Pb ( E + "E )[γ 1
"Z

F
+ γ 2]

      + 2Θ "E [α1
"Z

F
+α 2]− k

2
"Z

F

2
+ Z .

	
  

	
  
Grouping terms	
  
	
  

   

!V ≤ −λmin(Q) E
2
− λmin( "Q) "E

2

      + 2 Pb ( E + "E )[γ 1
"Z

F
+ γ 2]

      + 2 "E [Θ (α1
"Z

F
+α 2 )+ Pb (γ 1

"Z
F
+ γ 2 )]

      − k
2
"Z

F

2
+ Z

	
  

	
  
and further put in the for 
 

   

!V ≤ −λmin(Q) E
2
− λmin( "Q) "E

2

      + 2 Pb E α1
"Z

F
+α 2

⎡
⎣

⎤
⎦ + 2 "E k1

"Z
F
+ k2

⎡
⎣

⎤
⎦

      − k
2
"Z

F

2
+ Z .

	
  

	
  
Upon completion of squares, we get	
  
	
  

   

!V ≤ −(λmin(Q)−1) E
2
+ 2γ 2 Pb E

− (λmin(Q)−1) "E
2
+ 2k2 Pb "E

− "E − k1
"Z

F
⎡
⎣

⎤
⎦

2
+ k1

2 "Z
F

2

− "E −γ 1 Pb "Z
F

⎡
⎣

⎤
⎦

2
+ γ 1 Pb

2 "Z
F

⎡
⎣⎢

⎤
⎦⎥

2

− k
2
"Z

F

2
+ Z .

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (40)	
  

	
  
One more completion of squares allows for the following 

upper bound: 
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!V ≤ −(λmin(Q)− 2) E
2
+ 2γ 2

2 Pb
2

      − (λmin( "Q)− 2) "E
2
+ k2

2

      − k
2
− k1

2 − γ 1 Pb⎡⎣ ⎤⎦
2⎛

⎝⎜
⎞
⎠⎟
"Z

F

2
+ Z .

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (41)	
  

	
  
Either of the following conditions:	
  
	
  

2 2 2
2 2

( ) 2min

Pb γ k Z
E

λ Q
+ +

>
−

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (42) 

	
  

   
!E >

Pb
2
γ 2

2 + k2
2 + Z

λmin( !Q)− 2
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (43) 

 
and 
 

   

!Z
F
>

Pb
2
γ 2

2 + k2
2 + Z

k
2
− k1

2 − γ 1 Pb⎡⎣ ⎤⎦
2
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (44) 

 
will render	
     !V < 0 	
  outside a compact set. 

Define the ball in the space of the error variables 
 
{ }γ RB ζ B , ζ γ= ∈ ≤ 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (45) 

 
outside which   !V < 0 . Note from (37) that	
   γ RB B⊂ . 

Consider the Lyapunov function candidate in (39) and 
write it as TV ζ Γζ .= Let	
   vΗ 	
  be the maximum value of the 
Lyapunov function	
  V 	
  on the edge of	
   γB .	
  
	
  

2
v MΗ maxV γ Γ= = 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (46)	
  

	
  
Introduce the level set 	
  
	
  

{ }γ vΩ ζ , V Η= = 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (47)	
  
	
  
Let	
   α 	
  be the minimum value of the Lyapunov function	
   V 	
  
on the edge of	
   RB .	
  
	
  

2
mζ R

α minV R Γ
=

= = 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (48)	
  

	
  
Define the level set 
	
  

{ }α RΩ ζ B , V α= ∈ = 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (49)	
  

The condition in (37) ensures that	
   γ αΩ Ω⊂ , and thus 
ultimate boundedness of	
   ζ . 

	
  
	
  
	
  

7.	
  	
  Application	
  
 

To illustrate the performance of the proposed adaptive 
controller in the presence of unstructured uncertainties, we 
consider both nonlinear systems, Van der Pol and the tunnel 
diode circuit example: 
 
 
7.1.  Tunnel Diode Circuit Example 
 
Consider a tunnel diode circuit represented by the model [2].  
 

   

!x1 =
1
C

x2 −
1
C

h(x1)

!x2 = − R
L

x2 −
1
L

x1 +
u
L

⎧

⎨
⎪⎪

⎩
⎪
⎪

	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (50) 

 
where the output 1y x= 	
   has a full relative degree                             
(r1 = n1 = 2). Noting that	
   1x 	
   be	
   the voltage across the 
capacitor	
  C	
   and	
   2x 	
   is the current through the inductor L. 
The initial conditions were set as 1(0) 0 1x . ,= 2(0) 0 0005x .= 	
  	
  
and the element values of the circuit are R=1.5kΩ, L=1nH, 
C=2pF.	
  	
  

The function h :ℜ→ℜ 	
   represents the nonlinear 
characteristic of the tunnel diode [2] 
 

2 3 4 5
1 1 1 1 1 1( ) 2h x x x x x x= + + − − 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (51) 

 
The output y 	
  has a full relative degree: 1 1 2n r= = .	
  
	
  

	
  
7.2.	
  	
  Van der Pol Example 
 
The VDP nonlinear system is described as follow [19]. 
 

   

!x1 = x2

!x2 = −x1 + 2.x2 − 2x1
2x2 +

u

u + 0.1

⎧

⎨
⎪

⎩
⎪

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (52) 

 

with initial conditions 1 2(0) 0 5 (0) 1 5x . , x .= = . The	
   output 

1y x=  has full relative degree:	
   2 2 2n r .= = 	
  
	
  
The following dynamic compensator: 
 

   

!η = −5.1η +5 "y
vdc = −6.3η +8.2 "y

⎧
⎨
⎪

⎩⎪
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (53) 

 
places the poles of the closed-loop error dynamics in (10) of 
both nonlinear systems at	
   3 1 1 05. , . j− − ± ( refer to [4] for 
more details). 
	
  The observer dynamics in (17) were designed so that its 
poles are five times faster than those of the error dynamics. 
We implemented six neurons in the hidden layer, and the 
following sigmoidal basis function: 
 

1( )
1 axσ x
e−

=
+ 	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (54) 
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with 1a = . The adaptation gains were set to	
   2F .I= , with 
sigma modification gain	
   0 73k .= . 

The contribution of this paper is to design an adaptive 
output feedback control methodology using only one single 
hidden layer (SHL NN) that cancel the nonlinearities of both 
nonlinear systems, Van der Pol and tunnel diode circuit 
model, what bring to force the system measurement to track 
reference trajectory with bounded errors. 

 
 

8.  Simulation Results 
 
First, setting the output	
   1y x= 	
   for the highly uncertain 
nonlinear systems, tunnel diode circuit and Van der Pol 
example. However, the reader is reminded that the controller 
has been designed given only the fact that we have full 
relative degree	
   2r = . In the proposed control scheme, a 
fixed structure dynamic compensator is designed to stabilize 
the linearized system [2]. Then, we employ feedback 
linearization, coupled with an on-line NN to compensate 
adaptively for modelling errors. A signal, comprised of a 
linear combination of the measured tracking error and the 
compensator states, is used to adapt the NN weights [4]. 

 

	
  
 Fig. 1. Tracking without NN (red line) and with NN (green line).	
  

 
Fig.1. compares the system response without NN 

augmentation (red line) with the reference model output 
(blue line), clearly demonstrating the almost unstable 
oscillatory behavior caused by the nonlinear elements in the 
Van der Pol model in the first half time [0-40] seconds  and 
the nonlinearities of the tunnel diode equation in the last half 
time [40-80]s. Also, we validate that with NN augmentation 
(green line), these oscillations are eliminated after a period 
of about 2 seconds. This is accounted for the successful 
identification of the model inversion error (solid line) by the 
output of SHL NN (dashed line), which is also illustrated in 
Fig.2. 

Fig. 3 compares the control efforts without and with 
adaptation, where the NN  based adaptive controller exhibits  
a steady state tracking error. This error can be minimized 
when designing an excellent linear compensator. 

 

	
  
Fig. 2. Comparison between adaptive control signal (uad) and the 
computed uncertainties (∆).	
  

 
Moreover, one chooses a good structure of the neural 

network i.e. number of iterations and the number of 
neurones in the hidden layer, in order to avoid the 
phenomenon of on-training. The NN controller weights 
history is clearly shown in Fig.4. 

 

	
  
Fig. 3. Control effort with / without NN. 
 
 
8.1. Test of Robustness of the Adaptive Output Feedback 
Control  
 
To illustrate that the proposed approach is applicable to 
systems with parametric uncertainty and unmodeled 
dynamics, the rate of nonlinearities (∆)	
   will be increased 
(50% and 100%) of	
   its	
   norm	
   value. Once again, our 
perspective is to validate the effectiveness of the proposed 
NN with only one single hidden layer that compensate for 
highly unstructured uncertainties. 

Fig.5 confirms that the adaptive feedback control 
augmented using only single hidden layer neural networks 
overcomes the effect of nonlinearities on the tracking 
accuracy. This is justified by the good identification of 
nonlinearities	
   (∆)	
   by the NN which is also illustrated in 
Fig.2. 
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Fig. 4. NN controller weights history. 
 

 
Fig. 5. Tracking with NN, with increasing nonlinearities (50% and 
100%) of its norm value (∆). 
 

Fig. 6. Control effort (with NN) with variation of uncertainties (50 and 
100%).  
  

The NN augmentation adjusts (uad) for nonlinear effects 
(∆) and this has allowed us to minimize the tracking 
errors (yr – y), such as illustrated in fig.6. As expected, 
the SHL NN improves the tracking performance due to its 
ability to "model" nonlinearities on-line, even with 
variations of (∆) (50 and 100%), such as presented in 
fig.7. 

 
Fig. 7. Difference between adaptive control (uad) signal and the 
uncertainties varied (∆). 
 
 
9.	
  Conclusion	
  
 
A new approach has been proposed for adaptive output 
feedback control of uncertain nonlinear systems in the 
presence of both parametric uncertainty and unmodeled 
dynamics. The obtained controller is then augmented by 
only one SHL NN used to compensate adaptively for the 
neglected terms and unstructured uncertainties. A simple 
linear observer was introduced to estimate the derivatives of 
the tracking error. These estimates are used as inputs to the 
neural network and in the adaptation laws as an error signal. 
Ultimate boundedness of all error signals was proven by 
Lyapunov’s direct method. The methodology is applicable to 
nonlinear systems of unknown but bounded dimension, as 
long as the relative degree is known. Through computer 
simulation, we were able to demonstrate that the proposed 
intelligent adaptive output feedback controller provides 
strong robustness to modelling inaccuracies, ability to 
handle both complicated nonlinearity and arbitrary 
complexity, and excellent tracking performance was 
succeeded. 
 

______________________________ 
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