
Int j simul model 12 (2013) 4, 252-263
ISSN 1726-4529 Professional paper

DOI:10.2507/IJSIMM12(4)4.249 252

ROLE-BASED COMMAND HIERARCHY MODEL

FOR WARFARE SIMULATION

Kim, H. S.* & Lee, S. W.**
* Graduate School of Information and Communication, Ajou University

** (Corresponding author) Department of Software Convergence Technology, Ajou University
San 5, Woncheon-dong, Youngtong-gu, Suwon-si, Gyeonggi-do, 443-749, South Korea

E-Mail: heemanz@ajou.ac.kr, leesw@ajou.ac.kr

Abstract

In warfare modelling and simulation (M&S), the mission assigned to an aggregate unit, such
as platoon, company, battalion, etc., is achieved by the military operations that the unit’s
subordinates perform. In this procedure, the tactics for achieving the mission play an essential
role for the aggregate unit to translate the abstract mission statement into concrete military
operations to be performed by its subordinates in consideration of the dynamically changed
warfare situation. However, the practical component-based warfare M&S software does not
provide a model to explicitly represent such tactics. In this paper, we define ROle-based
Command Hierarchy (ROCH) model for users to formally represent the tactics of units at
design time and develop ROCH framework to support that an aggregate unit dynamically
assigns roles to its subordinates considering their situation at runtime. Then, we discuss the
benefits of our approach from the perspectives of composability, reusability, adaptability, and
scalability.
(Received in December 2012, accepted in May 2013. This paper was with the authors 2 months for 1 revision.)

Key Words: Component-Based Warfare Simulation, Tactical Model, Dynamic Role
 Assignment

1. INTRODUCTION

In the warfare modelling and simulation (M&S) domain, one of traditional topics is to model
and simulate the tactics for aggregate units that are composed of other units. Warfare
simulations usually include a large number of diverse units. These units can be an individual
unit, like rifleman, tank, aircraft, etc., or an aggregate unit, like platoon, company, battalion,
etc. In these simulations, the mission given to an aggregate unit by a user can be represented
to be a long-term plan that the unit should achieve in a collaborative manner. When a user
writes the scenario for a simulation, the long-term plan implicitly reflects the high-level
tactics that the unit should conform to. These tactics are realised in the simulation world
through the military operation that the unit’s subordinates execute. In this procedure, tactics
play an essential role for the warfare M&S software to interpret users’ intention (i.e. the
mission of a unit) into the unit-executable military operations.
 Recently, there are several on-going researches that apply component-based software
engineering to the development of warfare M&S software, such as OneSAF [1], FLAMES [2],
and VR-Forces [3]. In this software, a unit is usually represented to be an instance of a unit
component. This software helps developers to develop M&S systems fits to users’ purpose
with low cost using the reusability of components. Consequently, users can rapidly obtain the
M&S system they need. However, this software does not yet provide developers and users
with a model to explicitly represent the tactics for units. Based on this model, developers can
systematically make reusable unit components able to perform diverse tactics as well as users

mailto:heemanz@ajou.ac.kr
mailto:leesw@ajou.ac.kr

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

253

can flexibly represent the tactics for units proper to their purpose. In addition, developers and
users can share the understanding of the tactics represented in this model.
 In the previous work related to tactical model, researchers have proposed several models,
such as hierarchical agent control (HAC) [4], commander model (CB) [5], command-based
multi-agent system (CMAS) [6], tactical team behaviour (TTB) [7], agent-group-role (AGR)
[8], and so forth. Each model is helpful to represent the tactics of aggregate units and to
enable the units to perform the tactics. However, the tactics in these models tend to be tightly
coupled with units that can perform them. Therefore, it makes the reuse of units or tactics
difficult.
 In this work, we propose ROle-based Command Hierarchy (ROCH) model and
framework to overcome the shortcomings of the aforementioned work. ROCH model is used
to formally represent the tactics of aggregate units for the purpose of separating the tactics
from unit components. In order to achieve these goals, we bring the concept of role into our
model. Within the model of an aggregate unit, roles logically connect tactics with its
subordinates at design time under the situation where tactics and the subordinates are
separated. ROCH framework is used to dynamically bind the aggregate unit’s subordinates
with roles considering their situation at runtime. Consequently, this work enables units to be
more composable, reusable, and adaptable than those of the previous models.
 The remainder of this paper is organised as follows. We define a common model of the
existing component-based warfare M&S software in Section 2. Based on the common model,
we propose ROCH model and framework in Section 3. In Section 4, the advantages of ROCH
model and framework are described through a case study. Finally, we conclude and discuss
this work in Section 5.

2. A COMMON MODEL FOR WARFARE M&S SOFTWARE

There are common modelling elements to represent the units in the existing component-based
warfare M&S software products. At first, we summarize these modelling elements from
OneSAF, FLAMES, and VR-Forces. That are widely used for military M&S. Table I shows
the summarised modelling elements in each software product. The last CSFA, which is the
abbreviation of Composable Simulation Framework Architecture, is our simulation software
that we are currently under development. At a glance, there are some differences between the
modelling elements for each product, but many of them are used as similar concepts. These
similar modelling elements are only called in different names for each product as shown in
Table I.

Table I: Summary of modelling elements for units in warfare simulation.

Modelling Elements OneSAF FLAMES VR-Forces CSFA

Unit Actor Unit Entity Unit
Stand-alone Unit Entity Unit Entity Primitive Unit
Composite Unit Unit - Aggregate Entity Aggregate Unit

Equipment
Physical Agent /
Physical Model Equipment Sensor / Actuator Equipment Agent /

Equipment Model

Behaviour Logic
Behaviour Agent /
Behaviour Model Cognition Model Controller Behaviour Agent

Intra Unit

Communication
Trigger Specific interface Port Trigger

Inter Unit

Communication
Event Message Message Event

Cooperation Behaviour Agent Cognition Model Controller Behaviour Agent

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

254

Figure 1: A common model and an example for warfare M&S.

 From the observation of the existing products, we define a common model as the
preliminary work for the modelling of aggregate unit’s tactics. The common model is
represented in Fig. 1 using the terms of CSFA. Fig. 1 (a) shows the overview of the common
model, and Fig. 1 (b) provides an example to help the understanding of this model.
 From the environmental viewpoint, a unit can detect or make a change of the environment
around them through the equipment model(s) of their equipment agents. This change is
delivered to other equipment models in the simulation environment in the form of an event.
For example, a fire event generated by the rifle model of a soldier in Fig. 1 (b) is delivered to
a body model of other soldier to calculate its damage effect. An event may also contain a task
needed by a superior unit or a user. The dash allows in Fig. 1 (b) show the tasks initially
assigned by a user in a warfare scenario.
 A warfare scenario usually includes the organisational information for each side like blue
or red force. From the organisational viewpoint, this information is represented as a hierarchy
that consists of units. An aggregate unit consists of other units while a primitive unit does not
include any unit. Subordinate relations between aggregate units and their subordinates reflect
a chain of command in military domain. In Fig. 1 (b), the squads and soldiers are aggregate
units and primitive units, respectively.
 A unit is composed of agents from the unit viewpoint. This concept is borrowed from
OneSAF [1]. An agent is specialised into an equipment agent or a behaviour agent. An

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

255

equipment agent controls its equipment model to represent human, tank, radar, flight, rifle, etc.
A behaviour agent decides the behaviour of a unit in the current situation. Agents within a
unit can communicate with others using a trigger, which is a kind of event. In addition, a unit
implicitly has the tasks that it can achieve. A task is related with a unit through the behaviour,
which is included in the task, and the triggers, which is enabled by the behaviour. A primitive
unit can be composed of equipment and behaviour agents, and an aggregate unit can be
composed of only behaviour agents and other units. For example, a soldier consists of a body,
rifle, and soldier behaviour agents while a squad consists of multiple soldiers and a squad
behaviour agent in Fig. 1 (b). In this figure, we skipped the tasks able to be performed by each
unit for simplicity.
 From operational viewpoint, a mission is a conceptual goal that a unit has to achieve in a
simulation. A mission can be composed of tasks that are arranged in order. This series of
tasks means long-term plan in the position of the unit that performs the mission. Tasks are
delivered to a unit in the form of an event as abovementioned. A task is specified as a
combination of behaviours. Behaviour is specialised into composite or primitive behaviour. A
composite behaviour is composed of other behaviours that are arranged in order. A primitive
behaviour can cause the unit’s behaviour agent to generate triggers. The unit’s agents can
react on the triggers that they are interested in. Based on this mechanism, a unit completes the
tasks assigned to it.
 These modelling elements during simulation operate as follows. When starting a
simulation, each unit receives a series of tasks for achieving a mission of the simulation
through its communication model that is one of equipment models. The equipment agent with
this communication model delivers these tasks to the behaviour agent. The behaviour agent
translates tasks into behaviours and issues the triggers required by each behaviour. Other
agents of the unit react to the triggers. Independently of this procedure, the equipment models
of the unit can sense or generate events like fire, location update, etc. The event sensed by a
unit can affect the behaviour of the unit. These two procedures are repeated until the
simulation is finished.

3. ROLE-BASED COMMAND HIERARCHY

ROCH is described on top of the common model described in Section 2. In order to separate
tactics, which are composed of tasks, from units that perform the tasks, we bring the concept
of a role into ROCH. Fig. 2 shows the main idea of ROCH.
 The previous models, like HAC [4], CM [5], and TTB [7] focus on modelling of tactics
without consideration of unit components’ composability. On the other hand, the previous
role-based models, such as CMAS [6] and AGR [8], can specify the tactics of units as
interaction between roles that they play but do not clearly provide the method to separate
units from the roles that the units can play. When developing warfare M&S software with
these models, it is easy that the units are tightly coupled with their tactics. The result of this
coupling can be represented as shown in Fig. 2 (a). This means a superior unit should be
dependent on its subordinates or vice versa.
 In order to overcome the drawback of this tight coupling, ROCH uses roles as the abstract
unit to indicate an actual subordinate unit, which is not predetermined at design time. And
then each role is bound to an actual unit at runtime as shown in Fig. 2 (b). In ROCH, the
tactics to achieve each task assigned to an aggregate unit is represented as a plan. Therefore,
aggregate units have a plan for each task. The plan makes the subordinates of a unit tactically
behave. For representing this, a plan is represented with roles and a series of sub-tasks. A role
has a set of sub-tasks that its player should be able to achieve. A series of sub-tasks is the

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

256

tactical procedure for the aggregate unit to achieve the given task. A sub-task indicates the
task to be achieved by the player of a role at runtime.

Figure 2: The concept of ROCH.

 Unlike aggregate units, primitive units do not have any plan in ROCH because they
cannot have any subordinate. Primitive units merely perform a given task by themselves
according to the common model described in Section 2. Even though the architecture of
ROCH in Fig. 2 shows only two-level hierarchy, it can be applied to the overall hierarchy on
a side of a warfare simulation in the same manner. The details are discussed in Section 4.4.
 For the implementation of this concept, ROCH is realised into two artefacts: a meta-
model and a framework. The meta-model is used to specify units and plans to be a machine-
readable representation using XML, differently from the previous role-based approaches [6,
8-12] where roles can be tightly coupled with their player at development time. The proposed
meta-model allows the tactics of aggregate unit to be freely modified by users for their
simulation purpose. The framework provides the facilities for each aggregate unit to execute
their plans with a mechanism to dynamically assign roles in consideration of its situation at
runtime.

3.1 Meta-model for ROCH

The proposed meta-model in the context of the model-driven architecture [13] is a language to
represent a unit from the unit and tactical viewpoints. Fig. 3 shows the ROCH meta-model.
 In the unit meta-model, a unit has attributes and tasks (capabilities). The attributes of a
unit are used as variables to represent the state of the unit. The tasks of a unit mean that the
unit can perform the task.
 In the tactical meta-model, the plans for each aggregate unit are specified. These plans are
matched with each task that the aggregate unit can accept. A plan is composed of roles and a
plan expression. A role has attributes, tasks (responsibilities) and two conditions (assigning
and withdrawing conditions). The attributes and tasks of a role can be considered to be a kind
of requirement. For a subordinate unit to take the role, it must have the attributes and tasks
that are matched with the attributes and tasks of the role, respectively. It assures that a
subordinate, which are playing a role, can perform sub-tasks specified in the role as well as

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

257

the superior can determine the current situation from its subordinates’ state because they
already share the semantics of tasks and attributes. Two conditions are specified in a logical
expression that uses attributes of the role as variables. The conditions of a role are used for
superior unit to dynamically determine the player of the role among their subordinate units.
The assigning condition of a role represents the condition in which a subordinate can play the
role. The withdrawing condition of a role represents the condition in that a subordinate, which
is playing the role, cannot play it anymore. Comparing with the previous models, such as
OneSAF [1], FLAMES [2], and VR-Forces [3], without the support of dynamic role
assignment, these two conditions in ROCH model enable an aggregate unit to dynamically
assign roles to the proper subordinates considering their subordinates’ dynamic situation at
runtime. A plan expression represents a series of the sub-tasks to be achieved by the player
for each role. This series of sub-tasks is represented to be a sequential, concurrent, conditional,
or role-task expression. A sequential, concurrent, or conditional expression can have other
expressions. A role-task expression is used as the terminal expression to represent a task that
a role’s player should perform.

Figure 3: ROCH meta-model.

3.2 Framework for ROCH

The main function of ROCH framework is to execute the tactical model (i.e. plans) under the
behaviour agent of units. This framework is composed of Plan Lib, Role Manager, and State

Manager, as shown in Fig. 4. Plan Lib loads the plans for an aggregate unit. Also, it selects
and activates the plan for the task received from a user or a superior unit. Role Manager
assigns/withdraws the roles in the activated plan to/from the aggregate unit’s subordinates
according to assigning/withdrawing conditions. State Manager maintains the states of its
owner unit and the subordinates. The followings describe the operation of ROCH framework.

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

258

 ROCH framework operates based on the information from a scenario and unit
components for a warfare simulation as represented in top of Fig. 4. A scenario includes the
organisational information like that Unit A is a superior of Unit B. The scenario has references
to the configuration of unit components. The configuration of a unit component includes the
unit model, which is specified in unit meta-model of ROCH meta-model, and an
implementation package. If the unit component is for an aggregate unit, the configuration
additionally refers to the plan for each task that the unit can perform.

Figure 4: ROCH framework.

 The function of ROCH framework is separated into two sub-functions: state informing
function and plan execution function. The first function is for a unit to inform its superior unit
about its own capabilities and attributes. It is called when the unit participates in its superior,
or the capabilities and attributes of the unit are changed. This is designed using
publish/subscribe pattern (1~3) between the State Managers of a unit and its subordinate. The
information shared by this function is used by the following function.
 The second function is to execute the plan for achieving a task assigned by a user or its
superior unit. When an aggregate unit receives a task (4), the Plan Lib of the unit selects and
activates the plan for it (5). Then, Role Manager assigns the proper subordinates the roles
specified in the plan (6). After assigning roles, each role is bound with a subordinate. Then, a
series of sub-tasks are delivered to role-playing subordinates (7). Each subordinate performs
the received sub-tasks. If a role-playing subordinate cannot play the role (i.e. the
subordinate’s state meets the withdrawing condition of its role), the role is reassigned to one
of possible subordinates by Role Manager.

3.3 Procedure for role management

ROCH framework supports a dynamic role assignment at runtime using the procedure shown
in Fig. 5. The behaviour agent of an aggregate unit periodically calls Update function of
ROCH framework (1.1). At this time, the framework checks if there are roles to be withdrawn

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

259

from/assigned to its subordinates using roles’ withdrawing/assigning conditions described in
Section 3.1 (1.2/1.3). In these steps, the information of roles and subordinates obtained by
State Managers is used. In the withdrawing step, the framework checks whether every
assigned role’s withdrawing condition is met by the current state of the subordinate playing
the role or not. If the condition is met, the assigned role is withdrawn. After checking role
withdrawing, released roles are assigned to subordinate units according to a mechanism. The
flow chart in the right of Fig. 5 shows the mechanism of assigning a role to a subordinate in
this work. For a subordinate to play a role, its capabilities and attributes should cover the
responsibilities and attributes of the role, respectively. As explained in Section 3.1, the
capabilities of a unit are its achievable tasks, and responsibilities of a role are its required
tasks. The last step is to assign a role to a subordinate if the assigning condition of the role is
met by the current state of the subordinate. After role assignment, a pair of the role and the
subordinate is created in the framework (1.4).

Figure 5: Role manager’s function.

4. A SCENARIO-BASED CASE STUDY

In this section, we show how ROCH model and framework improves the composability,
reusability of unit component, the reusability of tactical model, and the adaptability of unit.
Additionally, we discuss the scalable application of ROCH model. In order to demonstrate
these benefits, we firstly introduce a simple combat scenario and then specify the units’
tactical models required to simulate this scenario. Then, we discuss some cases where the
benefits of ROCH model are explicitly exposed.
 Suppose that a user should simulate the combat scenario in which an infantry regiment of
blue side engages with a battalion of red side to occupy Point X as shown in Fig. 6 (a). For
simplifying this discussion, we make some assumptions described in Fig. 6 (b). Based on

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

260

these assumptions, we define two unit models for regiment (c) and battalion (d), and the plan
for a regiment to occupy a location (e). This scenario is very simple, but it contains the
context needed to explain the benefits of ROCH discussed in the following sections.

Figure 6: Example of combat scenario and the models for units and tactics.

4.1 Composability of unit component

ROCH model improves the composability of unit components. For a newly developed unit
component to interact with pre-existing unit components, the new component should be
developed dependently on the pre-existing components. In Fig. 7, case 1 shows an example of
which a new unit component (Component B) is directly dependent on a pre-existing unit
component (Component A). Case 2 shows that two unit components (Component A and
Component B) are combined through an interface for loose coupling. However, a problem
occurs when later developed unit component (Component K) needs to be combined with
several existing unit components (Component A, Component B, etc.) as shown in case 3. The
later developed unit component must implement all interfaces required by the existing unit
components to be combined. It may also cause a multiple inheritance problem.
 In order to overcome this problem, ROCH model represents each tactics for an aggregate
unit as a plan specified with the tasks that subordinates can understand and perform. See case

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

261

4 in Fig. 7. The instance of a new unit component (Component B) can be a subordinate of a
unit component (Component A) if the new unit component has the attributes and tasks
required by role definitions in its superior component. Similarly, it is possible for the new unit
to be a superior of other units. This makes the composition between unit components more
flexible. In Fig. 6, there is no direct dependency or inheritance between regiment and
battalion components. The capabilities of battalion configuration in Fig. 6 (d) are merely used
as roles’ tasks to specify the plan of regiment component like Fig. 6 (e).

Figure 7: Composition of components.

4.2 Reusability of unit component and tactical model

ROCH model improves the reusability of unit components and their tactics. Imagine the case
when a user edits the scenario of Fig. 6. There are two possible variances that ROCH model
allows. One is to modify the tactics of a superior unit component like the regiment component
in Fig. 6. In this case, the user can reuse the existing subordinate component, such as the
battalion component in Fig. 6, without rebuilding if the user does not require that the
battalions perform new task that they cannot understand. Other is to replace a subordinate unit
component, like the battalion component that is located on the rear line in Fig. 6 (a), with a
new type of battalion like an armored battalion. In this case, the user does not need to modify
the regiment component’s plans if the new battalion can understand the tasks required in the
plans. Even though this reusability has the obvious limit, our model can maximize the
reusability of existing unit components under the limit because it allows the tactics of a
superior unit to be defined using several combinations of the tasks shared between the
superior and its subordinate units.

4.3 Adaptability of unit

In warfare M&S software, units are often located in the unexpected situation, such as the loss
of resources, the encounter of unknown enemy, etc. As one of ways to solve this situation,
ROCH provides some adaptability to aggregate units. The adaptability is to reorganise the
subordinates within aggregate units considering their dynamically changed situation at
runtime. In ROCH model, each role specified in an aggregate unit has assigning and
withdrawing conditions to specify the conditions where role is assigned to a unit and
withdrawn from its player unit, respectively. The ROCH framework of the aggregate unit
assigns/withdraws the roles to/from subordinate units based on these conditions at runtime. It
makes each subordinate differently behave according to the role that it is playing and its state.
For example, the definition of roles in Fig. 6 (e) explains that one of two front battalions will
swap seats with the rear battalion if its combat power is damaged below 70 % at runtime. This
tactical behaviour of the regiment is initiated by the ROCH framework of the regiment as

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

262

follows: 1) withdrawing the front right battalion role and the rear battalion role from their
players, 2) reassigning the withdrawn roles to proper battalions, and 3) delivering ‘Move’ and
‘Follow” tasks, which are shown in Fig.6 (e), to the reassigned role’s players, respectively. As
this result, the front right battalion moves behind other two battalions.

4.4 Scalable application of ROCH model

In this section, we discuss the range to which ROCH model can be applied. Users or
developers can formally and systematically specify the tactical model of a unit from
individual soldier to corps in ROCH meta-model. Assume that company is the smallest unit in
the scenario of Fig. 6. Therefore, we need a company component and the tactical model for
each battalion to control companies of which it is composed. The plans of the regiment
component merely specify what battalions are required and how they tactically perform the
assigned tasks to the regiment. The regiment does not directly assign any task to the
companies of its battalions. The tactical model to control the companies is specified in the
plans of the battalion component. This mechanism can be expanded to an overall organisation,
which is specified in simulation scenarios.

5. CONCLUSION

In this paper, we proposed ROCH model and framework to specify and simulate the tactics of
aggregate units in composable warfare M&S software. Firstly, we analysed the previous
component-based warfare M&S software, such as OneSAF, FLAMES, and VR-Forces.
Through this analysis, we derived a common model able to be used in the warfare M&S
software. Next, we propose a meta-model for ROCH on top of this common model and design
ROCH framework to execute the tactical models specified in the meta-model. In order to
design ROCH meta-model, we have identified a main element (i.e. task) used for the
interaction between an aggregate unit and its subordinates on the chain of command. Then,
roles and plans are defined with the element in the unit-understandable description level. At
runtime, The ROCH framework of aggregate units assigns the roles, which are defined in the
model of them, to proper subordinates by considering their state and capabilities.
 Our approach provides users and developers with the following benefits. Firstly, ROCH
model and framework provide developers with the composability and reusability of unit
components and users with the reusability of tactical models. It is technically achieved by the
separation of its tactical model from unit component. Secondly, the model and framework
enable aggregate units to adapt the tactical behaviour at runtime using the proposed role
assignment mechanism. It helps users to simulate more dynamically adaptable tactics of units
onto the change of simulation environment. Finally, developers can develop unit component
from an individual unit to corps with the same design scheme based on ROCH model and
users specify the tactics for these units in the same manner. This benefit is originated from the
scalable modelling scheme of ROCH model.
 Presently, we are developing the component-based warfare M&S software including
ROCH model. In the development, we have identified that the developed unit component at
runtime frequently meets the exceptional cases: the failure of role assignment during
simulation and the occurrence of role re-assignment during executing a plan when a unit loses
a combat power during simulation. Even though ROCH model can deal with these cases by
adding conditions and conditional expressions into plans, these counter measures require the
plans to be more complex. It means that users have to consider every exceptional case.
Exceptional cases are usually issued when a unit meets the unpredictable situation at the
modelling time. However, it is difficult that users specify the plans for a unit considering

Kim, Lee: Role-Based Command Hierarchy Model for Warfare Simulation

263

every situation in which the unit can be located. A solution for this is to enable an aggregate
unit to adaptively modify their plans according to its situation. In future work, we have a plan
to invent a self-adaptive plan generation for aggregate units on the basis of ROCH model.
 The proposed approach in this work is merely applied to composable warfare M&S
domain, but we expect that this can be widely applied to several domains, such as Multi-
Agent Systems, Pervasive Systems, and so on, to improve the composability, reusability, and
adaptability of agents, components, or services.

6. ACKNOWLEDGEMENT

This research was supported by the Agency for Defense Development under the contract
No.UC100007ID in conjunction with REATIMEVISUAL Co. Korea and Next-Generation
Information Computing Development Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Science, ICT & Future Planning
(2013M3C4A7056233).

REFERENCES

[1] Logsdon, J.; Nash, D.; Barnes, M. (2008). One semi-automated forces (One SAF): capabilities,

architecture, and processes, DoD M&S (Modeling and Simulation) Conference Presentations
[2] Ternion Corporation. FLAMES Simulation Framework: Online Document Version 10.0.1, from

http://www.ternion.com, accessed on 01-07-2012
[3] VT MÄK. VR-Forces: Developers Guide, from http://www.mak.com/products/simulate/

computer-generated-forces.html, accessed on 05-03-2012
[4] Atkin, M. S.; Westbrook, D. L.; Cohen, P. R. (2001). HAC: A unified view of reactive

deliberation activity, Proceedings of the 5
th
 International Conference on Autonomous Agents, 92-

107
[5] Vakas, D.; Prince, J.; Blacksten, H. R.; Burdick, C. (2001). Commander behavior and course of

action selection in JWARS, Proceedings of the 2001 Winter Simulation Conference, 697-705
[6] Song, Y.; Yang, Y. (2006). Modeling organization of multi-agent system with command

mechanism, Proceedings of the 1
st
 International Multi-Symposiums on Computer and

Computational Sciences, 732-736
[7] Bisht, S.; Malhotra, A.; Taneja, S. B. (2007). Modelling and simulation of tactical team behavior,

Defence Science Journal, Vol. 57, No. 6, 853-864
[8] Ferber, J.; Gutknecht, O.; Michel, F. (2004). From agents to organizations: an organizational

view of multi-agent systems, Agent-Oriented Software Engineering IV, Lecture Notes in

Computer Science, Vol. 2935, 214-230, doi:10.1007/978-3-540-24620-6_15
[9] Xu, H.; Zhang, X.; Patel, R. J. (2007). Developing role-based open multi-agent software systems,

International Journal of Computational Intelligence Theory and Practice, Vol. 2, No. 1, 39-56
[10] Cabri, G.; Leonardi, L.; Zambonelli, F. (2003). BRAIN: A framework for flexible role-based

interactions in multiagent systems, On The Move to Meaningful Internet Systems 2003: CoopIS,

DOA, and ODBASE, Lecture Notes in Computer Science, Vol. 2888, 145-161, doi:10.1007/978-
3-540-39964-3_11

[11] Becht, M.; Gurzki, T.; Klarmann, J.; Muscholl, M. (1999). ROPE: role oriented programming
environment for multiagent systems, Proceedings of the 4

th
 IFCIS International Conference on

Cooperative Information Systems, 325-333
[12] Hahn, C.; Madrigal-Mora, C.; Fischer, K. (2009). A platform-independent metamodel for

multiagent systems, Autonomous Agents and Multi-Agent Systems, Vol. 18, No. 2, 239-266,
doi:10.1007/s10458-008-9042-0

[13] Object Management Group. OMG Unified Modeling Language (OMG UML), Infrastructure,
Version 2.4.1, from http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF, accessed on 30-
11-2012

http://www.ternion.com/
http://dx.doi.org/10.1007/978-3-540-24620-6_15
http://dx.doi.org/10.1007/978-3-540-39964-3_11
http://dx.doi.org/10.1007/978-3-540-39964-3_11
http://dx.doi.org/10.1007/s10458-008-9042-0

