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Abstract 

This paper aims to develop a desirable optimization method for the remanufacturing production 

scheduling under uncertainties. For this purpose, a quality evaluation standard was proposed in light of 

the two uncertainties, i.e. randomness and ambiguity, of remanufacturing job scheduling. Inspired by 

the rough set theory and multi-objective approximation sorting algorithm, this evaluation standard can 

eliminate the redundant information in quality evaluation. On this basis, a remanufacturing production 

scheduling model was constructed under uncertainties, and solved by a hybrid algorithm developed 

from the double algorithm, backpropagation (BP) neural network and the genetic algorithm (GA). 

Simulation results show that the proposed algorithm excels in convergence, and its solution can lead to 

the minimal scheduling cost and makespan. This algorithm can effectively optimize the scheduling 

problem of remanufacturing production and processing. The research findings shed new light on the 

rapid evaluation of recycled resource quality and the optimal scheduling of remanufacturing 

production. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

The rapid consumption of energy and resources has led to increasingly severe environmental 

pollution around the world. Against this backdrop, the circular economy based on “resource 

recovery-remanufacturing” stands out as an important method for resource saving and 

sustainable development [1, 2]. As the most mature remanufacturing industry, the automotive-

related field relies on the production processes of resource recovery, material screening, 

reprocessing, assembly, etc. [3, 4]. 

      The production and scheduling of remanufacturing involves many uncertainties. As 

shown in Fig. 1, these uncertainties occur in such processes as recycling, disassembly, 

reprocessing and assembly [5-8]. The conventional job-shop scheduling plans no longer apply 

to remanufacturing production, owing to the differences in manufacturing objects, production 

processes, production controls and production schedules [9, 10]. 

      Much research has been done on the optimization and simulation of remanufacturing shop 

scheduling. For example, some researchers analysed the impacts of the quality of recycled 

products (wear, bending, rusting, etc.) on the cost, processing efficiency, and production 

scheduling during remanufacturing [11-13]. Grguraš and Kramar established a classification 

standard for recycled resources and introduced it to the optimization of remanufacturing 

production scheduling [14]. Pan and Wang simplified the remanufacturing process into a 

flexible job-shop scheduling problem (FJSP) [15]. Considering the effect of recycled product 

disassembly on remanufacturing production scheduling, Rahman et al. and Ratnaweera et al. 

put forward an optimal scheduling plan for the minimal makespan and processing cost. They 

examined the different impacts of in recycled product parameters on production scheduling in 

remanufacturing shops [16, 17]. 
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Figure 1: Uncertainties in remanufacturing production. 

      Meanwhile, some researchers have improved the traditional optimization methods for 

production scheduling, such as queuing network, radio frequency identification (RFID), 

intelligent optimization algorithm and information sharing method, and relied on the 

improved methods to optimize the scheduling of remanufacturing shops, considering the 

features of remanufacturing and processing [18-20]. 

      To sum up, the above studies either consider a single uncertainty only or discuss the 

concentrated uncertainties independently. There is no further study on the superposed 

influence of multiple uncertainties over remanufacturing production decision-making and 

production scheduling [21-26]. Besides, few reports have been released to illustrate the 

uncertainties in the actual production of remanufacturing shops or centralized decision-

making of production plan and scheduling [27]. 

      To solve the above defects, this paper constructs a remanufacturing production scheduling 

model under uncertainties, and combines the double fuzzy algorithm [28], backpropagation 

(BP) neural network and genetic algorithm (GA) into a hybrid algorithm to solve the 

constructed model. The research findings shed new light on the rapid evaluation of recycled 

resource quality and the optimal scheduling of remanufacturing production. 

2. EVALUATION OF REMANUFACTURED WORKPIECE QUALITY 

In this paper, the parts in automobile engine are taken as the objects for quality evaluation of 

recycled products. The quality of recycled automobile engines differs greatly with such 

factors as the driving life, the maintenance condition and the external environment. According 

to the relevant statistics, the crankshaft in the engine is prone to wear, bending, fatigue and 

burning during the working process. The following parameters were adopted to classify and 

evaluate the crankshaft quality: wear (spindle A1, connecting rod A2), spindle roundness A3, 

cylindricity A4, bending degree A5, twisting degree A6, shaft spacing A7, roughness A8, crack 

A9 and burning degree A10. Table I shows the evaluation and grading standard involving these 

ten parameters. In the table, the ten parameters are divided into four levels. Among them, 

level 1 means the crankshaft is little worn and can meet the technical requirements after 

proper polishing and cleaning; level 2 means the crankshaft has some minor defects and can 

be used after repair; level 3 means the crankshaft has relatively large defects and cannot be 



He: Optimization and Simulation of Remanufacturing Production Scheduling Under … 

736 

used without special secondary treatment; level 4 means the crankshaft has been severely 

damaged and should be recycled. 

Table I: Quality evaluation and grading standard for engine crankshaft. 

Level A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

1 0-0.04 0-0.04 0-0.05 0-0.05 0-0.17 0-0.12 0.08-0.26 0.2-0.5 no no 

2 0.04-0.76 0.04-0.76 0.05-0.09 0.05-0.09 0.17-0.32 0.12-0.22 0.26-0.52 0.5-0.7 slight slight 

3 0.76-1.51 0.76-1.51 0.09-0.13 0.09-0.13 0.32-0.52 0.22-0.32 0.52-1.02 0.7-0.9 medium medium 

4 1.51-3.0 1.51-3.0 0.13-0.20 0.13-0.2 0.52-1.2 0.32-0.5 1.02-3.0 0.9-1.0 severe severe 

 

     For real-time evaluation and processing of the recycled crankshaft, the parameters in Table 

I were discretized as follows: 
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where sgf(Pk, D) is the importance of each evaluation parameter. The value of sgf(Pk, D) is 

positively correlated with the importance of the corresponding parameter. The weight of each 

parameter can be express as: 
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Figure 2: Quality evaluation of engine crankshaft. 
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      The quality evaluation of engine crankshaft consists of the steps is as shown in Fig. 2 

above. 

3. REMANUFACTURING PRODUCTION SCHEDULING MODEL 

UNDER UNCERTAINTIES AND ITS SOLUTION 

3.1  Model description 

As shown in Fig. 3, the recycling and remanufacturing of the crankshaft consists of engine 

disassembly, classification by the established standard, secondary processing and utilization. 

      In light of the operation process, it is assumed that the scheduling of engine disassembly 

and crankshaft rework shop involves m machines and n types of jobs, and that the scheduling 

optimization satisfies the following hypothesis: 

      (a) Each job corresponds to a set of optimal machines; once selected from the set, a 

machine can only repair this job at one time.  

      (b) The job can only be repaired and reworked by the selected machine at one time. 

      (c) The job can be processed at the initial time, and the makespan covers the time spent in 

the transport, pre-processing and waiting in the shop. 

 

Figure 3: Recycling and remanufacturing of the crankshaft. 

      The remanufacturing production scheduling model was designed after fully considering 

two uncertainties, namely, the randomness and ambiguity of shop scheduling in the 

remanufacturing industry. Meanwhile, the optimal machine and optimal processing sequence 

were determined for each job at a reasonable level of confidence. The optimization objective 

function of the model can be expressed as: 
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where i, j and k are the serial number of jobs, that of processes and that of machines, 

respectively; MHCik is the time cost of job processing; RTijk is the makespan; ETij is the 

processing time of product i in process j. Eqs. (4) to (6) are the constraints of the objective 

function. 

      The double fuzzy variable was introduced to convert the total makespan of the jobs into a 

triangular discrete fuzzy variable: 
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where ηr
1
, ηr

2
 and ηr

3
 are the optimistic value, the most likely value and the pessimistic value 

of the makespan, respectively. In actual scheduling optimization, the value of ηr
3
 should be 

minimized. Thus, the double fuzzy constrained model can be expressed as: 
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where ξ is the double fuzzy vector. Substituting Eq. (8) to the original scheduling model, the 

pessimistic value of the total scheduling cost for job production and processing in the entire 

shop can be adopted as the objective function:  
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      Under the above conditions, Eqs. (4) to (6) can be rewritten as: 
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3.2  Model solution 

Since it is difficult to solve the remanufacturing production scheduling model under 

uncertainties through theoretical analysis, this paper combines the double fuzzy algorithm, BP 

neural network and the GA into a hybrid model to solve the established optimization model. 

      First, the raw data for model simulation were generated by double fuzzy algorithm: 

      (1) Find the upper limit β at the maximum confidence level of the objective function 

according to Eqs. (10) to (12), and have θk such that Pos{θk}> ε. 

      (2) For any r, there is: 
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      Obtain the extreme value r when L(r) > α, and estimate the objective function. 

      (3) Take the raw data obtained by double fuzzy algorithm as the training sample, import 

them into the BP neural network to determine the following functions: 

     1 maxminU x C Ch C C      (14) 

    0 , 1,2, ,i ij i iU x Ch ET DD i p      …  (15) 

      The GA was employed to optimize the local optimization and slow convergence of BP 

neural network. First, the initial weight w was updated through improved crossover and 

mutation operations, and the error function Ek was established. Then, the fitness of each w 
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was computed through Ek. The above steps were repeated until the pre-set number of 

iterations was reached. 

 

Figure 4: Composite coding. 
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Figure 5: Solving process of the hybrid algorithm. 

      Through the optimization of the BP neural network by the GA, the author acquired the 

optimal network structure and parameters. Then, this network structure was embedded in the 

GA to calculate the target output of the chromosome. 

      Coding: The chromosomes of the GA were coded through composite coding (n + m), 

where n is the types of genes in the processing sequence of the entire shop, and m is the types 

of mapping of jobs to machines. Fig. 4 describes the processing scheduling of 4 jobs on 5 

machines. 

      Initialization: The following parameters of the GA were initialized, including the number 

of chromosomes, population, crossover operator, genetic operator and iterative threshold. 

      The calculated values were arranged, and the algorithm was terminated after reaching the 

pre-set number of iterations. The solving process is illustrated in Fig. 5. 
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4. SIMULATION AND VERIFICATION 

The proposed hybrid algorithm for remanufacturing production scheduling under 

uncertainties was verified through a case study involving 10 engines to be disassembled. The 

expected processing scheduling time and the upper and lower boundary confidence levels (r 

and δ) of the internal crankshafts are presented in Fig. 6. 

      The pre-evaluation results of the 10 engine crankshafts are listed in Table II, where M1—

M3 are the machines. The crankshafts were divided into high quality ones and low quality 

ones according to the evaluation standard in Table I. In Table II, the makespans for M1—M3 

mean the most optimistic, the most likely and the most pessimistic makespans. 

Table II: Expected makespan for engine crankshaft processing scheduling. 

Job Quality level Confidence 
Machine 

M1 M2 M3 

Q1 Q10 

Low 0.14 (132, 140, 148) (136, 142, 148) (126, 130, 134) 

High 0.82 (162, 177, 192) (158, 168, 178) (164, 174, 184) 

Q2 Q3 Q4 

Q5 Q8 Q9 

Low 0.12 (132, 137, 142) (135, 140, 145) (134, 136, 138) 

High 0.08 (157, 164, 171) (158, 168,178) (154, 165, 176) 

Q6 Q7 

Low 0.90 (135, 138, 141) (137, 142,147) (130, 136, 142) 

High 0.12 (156, 164, 172) (155, 166, 177) (161, 171, 181) 
 

 

Figure 6: Expected processing scheduling time and the upper and lower boundary confidence levels of 

crankshafts. 

      The crossover probability and mutation probability were set to 0.55 and 0.2, respectively, 

the total number of iterations to 1,000, and the initial population size to 50. The complexities 

CD of production scheduling under uncertainties can be expressed as: 

  log logsa it it pop itCD O T S n T T G npop nm n     (16) 

where O(TitTpop), O(Tsa Sit log n) and O(npop) are the complexities of BP neural network 

computation, double fuzzy algorithm computation and initialization, respectively. The 

proposed algorithm is a collection of the above complexities, which are related to the double 

fuzzy algorithm, BP neural network and the GA. 

      Table III shows the results of the simulation by the proposed algorithm. It can be seen that 

the pessimistic value of the scheduling of job production and processing was on the rise with 
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the increase of confidence. Because of the huge differences in the processing sequence of 

each job under different confidence levels, the solution obtained by our algorithms can lead to 

the minimal total cost and makespan of the production scheduling for jobs under multiple 

uncertainties, as long as the confidence level remains the same. 

      According to the convergence curve in Fig. 7, the proposed algorithm converged at the 

300
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 iterations, which demonstrate a good convergence. 
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Figure 7: Convergence curve of the optimal solution. 

Table III: Simulation results and verification analysis. 

Confidence 
Completion 

cycle (𝑓/̅min) 

Verification analysis 

Original opportunity Pessimistic value of the completion (cycle/min) 

0.7 611.2 0.90 665.6 

0.8 641.8 0.86 697.3 

0.9 656.5 0.83 715.4 

5. CONCLUSIONS 

Considering the multiple uncertainties in remanufacturing production scheduling, this paper 

creates a remanufacturing production scheduling model under uncertainties, and combines the 

double algorithm, BP neural network and the GA into a hybrid algorithm to solve the model. 

The research conclusions are as follows: 

      (1) The author proposed a quality evaluation method for recycled resources in the 

remanufacturing industry. Inspired by the rough set theory and multi-objective approximation 

sorting algorithm, this evaluation standard can eliminate the redundant information in quality 

evaluation, and serve as a rapid and effective way to evaluate the quality of recycled products. 

      (2) The proposed model was designed considering two uncertainties, namely, the 

randomness and ambiguity of shop scheduling in the remanufacturing industry. The raw data 

for model simulation were generated by the double fuzzy algorithm, and imported to the BP 

neural network to derive the uncertain function of the model in light of the features of the 

network. Meanwhile, the GA was employed to solve the local optimum and slow convergence 

of the BP neural network. 

      (3) Simulation results show that the proposed algorithm excels in convergence, and its 

solution can lead to the minimal scheduling cost and makespan. This algorithm can 

effectively optimize the scheduling problem of remanufacturing production and processing. 
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