
Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011, 3–8, DOI: 10.2478/v10198-011-0034-7 3

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

DOUBLE INPUT OPERATORS OF THE DF KPI SYSTEM

Liberios VOKOROKOS, Norbert ÁDÁM
Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, tel +421 55 602 2839,
e-mail: liberios.vokorokos@tuke.sk, norbert.adam@tuke.sk

ABSTRACT
Dataflow architectures can be used advantageously for computation-oriented applications that exhibit a fine grain parallelism.

The implementation of the dataflow computer architecture depends on the form of execution of the dataflow program instructions,
which is implemented as a process of receiving, processing and transmission of data tokens. The architecture described in this paper
belongs to a class of dynamic dataflow architectures with direct operand matching. The concept of direct operand matching
represents the elimination of the costly process (in terms of computing time) related to associative searching of the operands. This
process is associated with the processing units of the proposed system. The processing units are designed as a dynamic multi-
function pipelined unit of five segments, Load-Fetch-Operate-Matching-Copy. This pipeline stages handle processing of operand
matching of dataflow operators. From the many types of operators, this paper describes microprogram managing for double input
operators.

Keywords: dataflow, operand matching, coordinating processor, double input dataflow operators

1. INTRODUCTION

With the requirements on high performance, a great
focus was given to a specific class of parallel computers in
the 60's, denoted as dataflow architectures. In dataflow
architectures the computing process is managed by the
operands flow accessed on different levels for executing
instructions of dataflow program. The dataflow
computational model uses a dataflow graph, to describe a
computation. This graph consists of nodes (vertices),
which indicate operations, and arcs (edges) from one node
to another node, which indicate the flow of data between
them. Nodal operations are executed when all required
information has been received from the arcs into the node.
Typically, a nodal operation requires one, two or N
(N ≥ 3) operands (for conditional operations a Boolean
input value) and produces one result. Hence one, two or N
arcs enter a node and one arcs leave it. Once a node has
been activated and the nodal operation performed (i.e. the
node has fired) result is passed along output arc to waiting
node or nodes, if the result is copied. This process is
repeated until all of the nodes have fired and the final
result has been created. Executing the program
instructions can be done sequentially, in a flow
(pipelining), parallel, or in different hybrid modes,
depending on the used dataflow computational model. The
fundamental idea behind the data flow computational
model is the mapping of tasks to the computing elements,
which can increase the rate of parallelism. Dataflow
architectures can be used advantageously for computation-
oriented applications that exhibit a fine grain parallelism.
Examples of such applications are image processing,
scene analysis, aerodynamic simulation, weather
prediction etc. The dataflow concept has been utilized in
the design of various processors [1], [2], [3], [4], [5], [6],
[7], [8], [9]. The renewed interest in dataflow architectures
is in part sparked by the underlying elegance of the model,
but also motivated by the changes wrought by continued
technology scaling [10]. The WaveScalar architecture [8]
is an example.

2. ARCHITECTURE OF THE DF-KPI SYSTEM

The task the computer designer faces is a complex
one: Determine what attributes are important for a new
computer, then design a computer to maximize
performance while staying within cost, power, and
availability constraints. This task has many aspects,
including instruction set design, functional organization,
logic design, and implementation. The implementation
may encompass integrated circuit design, packaging,
power, and cooling. Optimizing the design requires
familiarity with a very wide range of technologies, from
compilers and operating systems to logic design and
packaging [11]. The DF-KPI system [12], being
developed at the Department of Computers and
Informatics at the Faculty of Electrical Engineering and
Informatics of the Technical University of Košice, has
been designed as a dynamic system with direct operand
matching. The architecture model of the DF-KPI
computer is a part of a dataflow complex system, which
includes support components for dataflow computing
environment for the implementation of the defined
application targets.

The structural organization (Fig. 1) of the DF-KPI
computer architecture model consists of the following
components:

Coordinating Processors (CP) are intended to manage,
coordinate and process instructions of the dataflow
program, based on the presence of their operands, which
are enabled at the CP.DI input port of the coordinating
processor - either from its CP.DO output port or from the
CP.DO output ports of other CPs through an
interconnection network, or from a Data Queue Unit and
from the Frame Store. The structure of the CP is
a dynamic pipelined multiple-function system.

The Data Queue Unit (DQU) is a unit designed to
store the activation symbols (data tokens), which represent
operands waiting for matching during program execution.

The Instruction Store (IS) is a memory of instructions
of the dataflow program, in the form of a proper data flow
graph.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

4 Double Input Operators of the DF KPI System

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

The Frame Store (FS) is a memory of matching
(pairing) vectors, by means of which the CP detects the
presence of operands to perform the operation defined by
the operator (node) in the data flow graph. The short
description of the item format of MV matching vector in
the FS is <FS>::= <AF><V>, where AF is a flag of the
operand's presence (Affiliation Flag) and V is the value of
the given operand.

Supporting components of the dataflow system are
needed to create a realistic computing environment. In the
given architecture they are formed by the following:

The Main computer (HOST) provides standard
functions of the computer system during dataflow
computing process.

The Information Technology unit is a unit used to
create dedicated application environments (virtual reality,
diagnostics, e-learning).

The I / O processors for fast direct inputs/outputs into
the dataflow module (standard I/Os are implemented by
the main computer).

The structure of the CP is a dynamic system with
pipeline processing, composed of Load, Fetch, Operate,
Matching and Copy segments also indicates the states of
system.

The Load segment is used for loading the data token
and its preparation for further processing in the Fetch
segment. This segment is the first segment of the
processor.

The Fetch segment reads the word DFI from the
instruction memory IS. The word DFI defines the format
of the dataflow instruction. This segment is reachable by
the processor from the segment Load and Operate. In case
that the segment Operate and segment Load requires the
access to the Fetch segment a conflict occurs. The priority
system decides which segment will be preferred.

The Operate segment handling the data token
processing based on the operation code OC stored in word
DFI. The execution units of the coordinating processor are
accessed from this segment. The result of the operation is
sent to the Load segment. In case that the result of the
operation is intended to matching in the FS memory, then
it is sent to the Matching segment. If the result is intended
to Load and this segment is occupied, the token will be
sent to another processor by the interconnection network,
or will be saved into the DQU.

The Matching segment ensures matching of operands
on the basis of flag in DFI.

Instructions needed for copying the operation results
are processed in the Copy segment.

The format of the dataflow instructions is as follows:
DFI ::= OC LI {DST, [IX]}n

Where OC is the operation code; LI is a literal (e.g.
number of copies of the result); DST represents the target
address for operation result; IX is a matching index for the
operations.

The dataflow program instruction represented by a
data token is stored in the Instruction Store at the address
defined by DST field. The data token has the following
format

DT ::= P T, V MVB {DST, [IX]}
Where P is the priority of the data token; T represents

the data type of operand with a value V; MVB defines a
base address of matching vector in the Frame Store and

Fig. 1 The DF-KPI System

DST specifies a destination address of the resulting DT
data token.

The structure of the DST field is the following
DST ::= MF IP ADR

Where MF is a matching function, with a defined set
of labels {M, B}, M stands for matching (of two DTs), B
stands for bypass (without DT matching); IP defines an
input port {L(eft), R(ight)}; ADR is the address of the
operator or function.

If the operands enter the two-input or multi-input
operators, operand matching occurs. The DF-KPI
architecture uses the direct operand matching control
mechanism. It is based on the allocation of a Matching
Vector in the Frame Store according to the activation code
(procedure, call). Allocated Matching Vectors are
represented as a matching record in the Frame Store.

The format of the Matching Vector in the Frame Store
is as follows:

FS[BACT + H + IX + 1] ::=
RC, MVS BOLD DSTRET D{[BNEW]{D}}

Where BACT is a pointer to the current top record; H is
the size of a header of record; MVS defines the size of a
matching vector; RC is the reference counter; BOLD is a
pointer to the previous token; DSTRET specifies the return
address; BNEW defines the base address for new matching
record and D represents an operand value.

The RC field is set according to the size of the
matching vector at compile-time. After the function
associated with the operator has fired, the value of RC is
decremented. If RC = 0, the Matching Vector in the frame
store is released.

3. OPERAND MATCHING

One of the most important steps based on the dynamic
dataflow model is direct operand matching [12], [13]. The
concept of direct operand matching represents the
elimination of the costly process (in terms of computing
time) related to associative searching of the operands. In
this scheme, a matching vector is dynamically allocated in
the Frame Store memory for each token generated during

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011 5

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

the execution of the data flow graph. The current location
of a matching vector in the Frame Store is determined at
compile time, while the Frame Store location is
determined after the program starts.

Each calculation can be described using an instruction
address (ADR) and the pointer to the matching vector
MVB in the Frame Store. The <MVB, ADR> value pair is
part of the token. A typical action is the searching for the
operands pair in the Frame Store. The matching function
provides searching for the tokens marked identically.
After the operand has arrived to the Coordinating
Processor, the matching function detects if a commonly
entered operand is present in the Frame Store. Detection is
performed according to matching IX index. If the operand
is not there yet, it is stored in the Frame Store, in the
Matching Vector specified by base address of the MVB
operand, into the item specified by index IX.

The operand matching process control at the operator
input is influenced by the process of matching, instruction
execution and generation of a result at its output. Using a
compiler producing DFG output with forward searching
that allows for the detecting and eliminating of redundant
computations and change order of token processing,
process control can be defined as the transition of
activation signs along the edges of the data flow graph
(Fig. 2), between the “producer” (P) operator and the
“consumer” (C) operator.

Fig. 2 The operand matching
(a – P-single input, b – P-double input, c – P-double input/C-

single input, d – P-double input/C-double input,
 e – P-double input/C-u-single, v-double input)

In this article the proposed operand matching control

for configuration shown in Fig. 2b is described.

3.1. Process Control for P-double Operators

The binary information stored in DF KPI system can
be classified as either data or control information. The
main components of this system are the CPs, wherein the
data is manipulated in a datapath by using
microoperations (microop), implemented with register
transfers. These operations are implemented with
adder/subtractors, shifters, registers, multiplexers and
buses. The control unit of the CP provides signals that
activate the various microop within the datapath to
perform the specified processing tasks. The control unit of

the CP also determines the sequence in which the various
actions are performed.

The control unit that generates the signals for
sequencing the microop is a sequential circuit with states
that dictate the control signals for the system (Fig. 3).

Fig. 3 State (Mealy) Machine

At any given time, the state of the sequential circuit
activates a prescribed set of microop. Using status
conditions and control inputs, the sequential control unit
determines the next state. The digital circuit that acts as
the control unit provides a sequence of signals for
activating the microop and also determines its own next
state.

The control unit of the CP allows transition between
different states denoted as Load, Fetch, Matching, Copy,
and Operate. These states (Fig. 3) are represented by
different segments (l – Load, f – Fetch, m – Matching,
c – Copy, o – Operate) of the control unit in different
order. The segments work in overlapped manner.
Transitions between segments are controlled by the
microprogram.

Formal notation of the microprogram (which results
from the functional system specification and its
decomposition to operational/datapath and control unit) is
represented by the program scheme. Program model
scheme of the operational part is expressed as a sequence
of marked pairs

ii pn : (1)

Where in are labels, and ip - are instruction(s).

Instructions ip in respect to (1) display different

elementary instructions – microinstructions, which initiate
execution of different elementary operations –
microoperations. Further following basic command types
are defined

nX / (2)

kk nnn :,,:,: 2211   (3)

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

6 Double Input Operators of the DF KPI System

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

kkk nXnXnX /:,,/:,/: 222111   (4)

STOP (5)

where

kXXXX ,,,, 21  – operations or microoperations;

STOP – special operation;

knnnn ,,,, 21  – labels;

k ,,, 21  – predicates (conditions), with the

characteristics

1 , pri 0
k

1i


 iji ji 

Command (2) shows the microinstruction intended for
the execution of microop, after which a transition is made
to an instruction marked with the label n. Commands (3 –
4) represent control instructions (microinstructions)
intended for execution of branch and conditional jumps in
the program (microprogram). These commands test the
condition defined by the predicate. If the condition αi is
valid a transition is made to an instruction marked with
the label ni (3) or an operation X is simultaneously
executed (4).

Let the execution of the operations Xi be launched by
the control word Ri consisting of the control signal
sequence

  kjRRRRR jmkmmm
i ,,1,1,0

~
 ,

~~~
,,2,1,    (6) 

Let the predicates αp be represented by the status 
information word 

  qrLLLLL rnqnnn
p ,,1,1,0

~
  ,

~~~
,,2,1,   . (7)

Then the micro program of executed P-double input
operators DFG (Fig. 2b), through microop for the various
stages of multifunctional pipeline unit has a form

67176

5136
21

135

5126
20

124

476
19

73

3
18

2

2
17

112
16

101

391
15

93

3
14

2

2
13

1

581
12

85

471
11

74

4
10

3

563
9

62

2
8

1

1
7

7

657
6

56

6
5

5

245
4

44

436
3

33

325
2

22

11211

5
1

0

/ ,/:

/ ,/::

/ ,/::

/ ,/::

/:

/:,/::

/ ,/::

/:

/:

/ ,/::

/ ,/::

/:

/ ,/::

/::

/:

/ ,/::

/:

/,/::

/,/::

/,/::

/,/:

/:

oLlLo

oLoRLo

oLoRLo

oLoRLo

oRo

oRLoRLo

fLoRLf

fRf

fRf

mLfRLm

mLlRLm

mRm

mLmRLm

mRm

mRl

lLlRLl

lRl

lLlRLl

lLlRLl

lLlRLl

lLlLl

lRl

The labels l, f, m, o represent the segments Load,

Fetch, Matching and Operate. The microoperations and
predicates of individual control words and status words
are listed in Tab. 2 and Tab. 3.

The function isFree (X) tests the busy state of segment
X. Micro-operations, which can be executed in parallel,
are placed in a single command block (Tab. 1).
Initialization of the coordinating processor is done by sign

Init = 1. The boot command of the data flow program
loads the data token from the DQU to the LOAD segment,
sets the busy flag for the LOAD segment to 1 (i.e. the
LOAD segment is occupied) and in next step blocks the
processing of the following tokens (GetDT = 0). If the
next segment, the Matching segment, is free, the token is
loaded into the Load/Matching register. After that, the
microprogram releases the LOAD segment, activates the
loading of other tokens into the coordinating processor,
and performs operand matching for defined double input
operator.

Fig. 4 Pipeline system for processing of double input operators

The control mechanism copies the content of the

Load/Matching register to the Matching/Fetch register and
determines the DF address operator based on the
MFR.DST.ADR address. In the next step the operator will
be loaded from the instruction store (IS) into the FOR.

If the Operate segment is not busy (isFree (Operate) =
true), the operator is fetched from the Fetch/Operate
register and processed. In the next step, if the CP is not
busy, the result of the operator processing is available for
processing in the same CP. Otherwise; the result is
propagated to another CP through the interconnection
network. If all CPs are busy, the token is stored in the
DQU.

The proposed architecture at a logical level of operand
matching control is show in Fig. 4. FIFO registers with the
following specifications have been inserted to increase the
throughput coefficient between the various stages of
coordinating processor:

Between the stages L and M  register LMR
Between the stages M and F  register MFR
Between the stages F and O  register FOR

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

Acta Electrotechnica et Informatica, Vol. 11, No. 4, 2011 7

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

Table 1 Control words

Control words Microoperations

3,12,11,1
1 RRRR 

GetDT:=1 || Load_free:=0 ||
CP.DI:=DQU.OUT

2,21,2
2 RRR 

 PutDT:=0 || CPi.DI:=CPj.DO

1,31,2
3 RRR 

PutDT:=0 || CP.DI:=ICN.OUT

1,41,2
4 RRR 

PutDT:=0 || CP.DI:=DQU.OUT

1,1
5 RR 

 GetDT:=0

2,61,62,11,1
6 RRRRR 

GetDT:=1 || Load_free:=1 ||
Matching_free:=0 || LMR:=CP.DI

1,7
7 RR  IS.ADR:=LMR.DST.ADR

2,81,8
8 RRR 

FS.MVB:=LMR.MVB ||
FS.IX:=LMR.IX

1,9
9 RR 

FS[MVB+H+IX+1].V:=LMR.D

1,10
10 RR 

FS[MVB+H+IX+1].AF:=1

1,62,1
11 RRR 

Load_free:=1 || Matching_free:=1

2,121,121,6
12 RRRR 

Matching_free:=1 || Fetch_free:=0
||
MFR:=LMR

1,13
13 RR 

IS.ADR:=MFR.DST.ADR

3,142,141,14
14 RRRR 

FOR.OC:=IS[ADR].OC ||
FOR.DST:= IS[ADR].DST ||
FOR.LI:= IS[ADR].LI ||

2,151,151,12
15 RRRR 

Fetch_free:=1 || Opearte_free:=0 ||
FS.MVB:=L.DI

2,161,16
16 RRR 

FOR.LD:= FOR.D ||
FOR.RD:= FS[MVB+H+IX+1].V

2,171,17
17 RRR 

FOR.LD:=FS[MVB+H+IX+1].V ||
FOR.RD:=FOR.D

3,182,181,18
18 RRRR 

CP.DO.D:=
PEn(FOR.LD,FOR.RD) ||
CP.DO.DST:=FOR.DST ||
CP.DO.IX:=FOR.IX

1,151,21,1
19 RRRR 

GetDT:=1 || PutDT:=1 ||
Operate_free:=1

2,201,201,1
20 RRRR 

GetDT:=1 || PutICN:=1 ||
ICN.IN:=CP.DO

1,211,151,21,1
21 RRRRR 

GetDT:=1 || PutDT:=1 ||
Operate_free:=1
DQU.IN:=CP.DO

4. CONCLUSIONS

The efforts to construct high-performance systems
leads to constant research and using the benefits of chosen
architecture or even to a development of a new, in which
the increase of performance is expected, to suit the current
demands for power. One of many scopes of computer
architecture and principles of its work is the way of
organizing and managing the computing process –
information processing.

Computation process is represented by a sequence of
states, in which changes are due to execution of program
instructions - by this fact the computational process of the
computer is organized.

Table 2 Status words

Status words Microoperations

1L GetDT = 1

2L PutDT = 1

3L isEmpty(ICN) = 0

4L isEmpty(DQU) = 0

5L isFree(matching) = 1

6L FS[MVB+H+IX+1].AF= 0

7L isFree(Load) = 1

8L isFree(Fetch) = 1

9L isEmpty(Operate) = 1

10L FOR.IP = L

11L FOR.IP = R

12L isEmpty(ICN) = 1

13L isFree(DQU) = 1

The organization of computational process introduces

the description of these changes by defining the conditions
for executing instructions and their consequences. From
the organization of computational process a managing
process results. The proposed architecture described in
this article is based on dataflow computational model, in
which the computation is controlled on the basis of
dataflow processing. Essential element of DF architecture
is coordinating processor (CP), which is responsible for
managing and organizing the execution of instructions.
Structural organization of CP is designed as a dynamic
multifunctional system.

By executing operations CP can pass through different
states, which results that this unit is a dynamic flow
system. Transitions and the order of transitions between
different states are defined by the type of executed
operator by interpreting flow of operands.

From the many types of operators, this article provides
microprogram managing for double input operators. The
currently developed DF-KPI system with its principle of
data processing and its parameters is intended for solving
tasks requiring brute force. The development of the DF-
KPI system is focused on the fields of virtual reality [14]
and computer security [15], [16], [17].

ACKNOWLEDGMENTS

This work is the result of the project implementation:
Development of the Center of Information and
Communication Technologies for Knowledge Systems
(ITMS project code: 26220120030) supported by the
Research & Development Operational Program funded by
the ERDF.

REFERENCES

[1] GYÖRÖK, GY. – MAKÓ, M. – LAKNER, J.:
Combinatorics at Electronic Circuit Realization in
FPAA, Acta Polytechnica Hungarica, Vol. 6, No. 1,
pp. 151–160, 2009.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

8 Double Input Operators of the DF KPI System

ISSN 1335-8243 (print) © 2011 FEI TUKE ISSN 1338-3957 (online)
www.aei.tuke.sk www.versita.com/aei

[2] ARVIND–CULLER, D. E.: Dataflow Architectures,
Annual Review in Computer Science, Vol. 1, pp.
225–253, 1986.

[3] CARLSTRÖM, J. – BODÉN, T.: Synchronous
Dataflow Architecture for Network Processors,
Micro IEEE, Vol. 24, Issue 5, pp. 10–18, Sept. – Oct.
2004.

[4] DENNIS, J. B.: Data-Flow Supercomputers,
Computer, pp. 48–56, Nov. 1980.

[5] GURD, J. R. – KIRKHAM, C. C. – WATSON, I.:
The Manchester Prototype Data-Flow Computer,
Commun. ACM, Vol. 28, pp. 34–52, Jan. 1985.

[6] JAMIL, T. – DESHMUKH, R. G.: Design of a
Tokenless Architecture for Parallel Computations
Using Associative Dataflow Processor, Proc. of
Conf. on IEEE SOUTHEASTCON ´96, Briging
Together Education, Science and Technology (Cat.
No. 96CH35880), Tampa, FL, USA 1996, pp. 649 –
656.

[7] ŠILC, J. – ROBIČ, B. – UNGERER, T.: Asynchrony
in Parallel Computing: From Dataflow to
Multithreading, Parallel and Distributed Computing
Practices, Vol. 1, pp. 57–83, 1998.

[8] SWANSON, S. – MICHELSON, K. – SCHWERIN,
A. – OSKIN, M.: WaveScalar, Proc. of the 36th
International Symposium on Microarchitecture
(MICRO-36 2003), 2003, pp. 291–302.

[9] VERDOSCIA, B. – VACARRO, R.: ALFA: A Static
Data Flow Architecture, Proceedings of Fourth
Symposium on the Frontiers of Massively Parallel
Computation, McLean, VA, USA, 1992, pp. 318–
325.

[10] MADOŠ, B.: Design of dataflow computer
architecture with tile organization, SCYR 2009: 9th
Scientific Conference of Young Researchers, Košice:
FEI TUKE, pp. 207–209, 2009.

[11] HENNESSY, J. L. – PATTERSON, D. A.:
Computer Architecture – A Quantitative Approach.
San Francisco, CA: Morgan Kaufmann, 4th edition,
p. 704, 2006.

[12] JELŠINA, M.: Design of Data Flow KPI Computer
System (in Slovak). Košice, SR: elfa s.r.o., p. 214,
2004.

[13] VOKOROKOS, L.: Data Flow Computer Principles
(in Slovak). Košice, SR: Copycenter, spol. s.r.o.,
p. 147, 2002.

[14] SOBOTA, B. – PERHÁČ, J. – STRAKA, M. –
SZABÓ, CS.: The Applications of Parallel,
Distributed and Network Computer Systems to Solve
Computational Processes in an Area of Large
Graphical Data Volumes Processing (in Slovak).
Košice, SR: elfa s.r.o., p. 178, 2009.

[15] VOKOROKOS, L. – ÁDÁM, N. – BALÁŽ, A. –
PERHÁČ, J.: High-Performance Intrusion Detection
System for Security Threats Identification in
Computer Networks, Computer Science and
Technology Research Survey, Vol. 4, pp. 54–61,
2009.

[16] BALÁŽ, A. – TRELOVÁ, J. – KOSTRÁB, M.:
Architecture of distributed intrusion detection system
based on anomalies, INES 2010: 14th international
conference on Intelligent Engineering Systems:
proceedings, Las Palmas of Grand Canaria, Spain.,
pp. 79–83, 2010.

[17] AUGUSTÍN, M. – BALÁŽ, A.: Intrusion detection
with early recognition of encrypted application,
INES 2011 : 15th IEEE International Conference on
Intelligent Engineering Systems, Poprad, High
Tatras, Slovakia, pp. 245–247, 2011.

Received October 3, 2011, accepted December 15, 2011

BIOGRAPHIES

Liberios Vokorokos (prof., Ing., PhD.) was born on
17.11.1966 in Greece. In 1991 he graduated (MSc.) with
honours at the Department of Computers and Informatics
of the Faculty of Electrical Engineering and Informatics at
Technical University in Košice. He defended his PhD. in
the field of programming device and systems in 2000; his
thesis title was "Diagnosis of compound systems using the
Data Flow applications". He was appointed professor for
Computers Science and Informatics in 2005. Since 1995
he is working as an educationist at the Department of
Computers and Informatics. His scientific research is
focusing on parallel computers of the Data Flow type. In
addition to this, he also investigates the questions related
to the diagnostics of complex systems. Currently he is
dean of the Faculty of Electrical Engineering and
Informatics at the Technical University of Košice. His
other professional interests include the membership on the
Advisory Committee for Informatization at the faculty and
Advisory Board for the Development and Informatization
at Technical University of Košice.

Norbert Ádám (Ing., PhD.) was born on 30.8.1980. In
1998 he graduated (MSc.) with distinction at the
Department of Computers and Informatics at the Faculty
of Electrical Engineering and Informatics of the Technical
University of Košice. He defended his PhD. in the field of
Computers and computer systems in 2007; his thesis title
was "Contribution to simulation of feed-forward neural
networks on parallel computer architectures". Since 2006
he is working as a professor assistant at the Department of
Computers and Informatics. Since 2008 he is the head of
the Computer Architectures and Security Lab. at the
Department of Computers and Informatics. His scientific
research is focusing on the parallel computers
architectures.

Unauthenticated | 194.138.39.60
Download Date | 1/15/14 3:20 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

