Skip to main content
Log in

Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Using the memory conception developed in the framework of the Mori-Zwanzig formalism, the kinetic equations for relaxation functions that correspond to the previously suggested empirical functions (Cole-Davidson and Havriliak-Negami) are derived. The obtained kinetic equations contain differential operators of non-integer order and have clear physical meaning and interpretation. The derivation of the memory function corresponding to the Havriliak-Negami relaxation law in the frame of Mori-Zwanzig formalism is given. A physical interpretation of the power-law exponents involved in the Havriliak-Negami empirical expression is provided too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Boon, and S. Yip, Molecular Hydrodynamics. Dover, New York (1980), 435 p.

    Google Scholar 

  2. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics, I. Alternating current characteristics. J. Chem. Phys. 9 (1941), 341–351.

    Article  Google Scholar 

  3. A. Cuyt, V. Brevik Petersen, B. Verdonk, H. Waadeland, W.B. Jones, Handbook Continued Fractions for Special Functions. Springer Science+ Business Media B.V. (2008), 431 p.

    MATH  Google Scholar 

  4. D.W. Davidson, R.H. Cole, Dielectric relaxation in glycerol, propylene. Glycol, and n-propanol. J. Chem. Phys. 19 (1951), 1484–1490.

    Article  Google Scholar 

  5. P. Debye, Polar Molecules. Dover, New York (1954).

    Google Scholar 

  6. A. Jurlewicz, K. Weron, M. Teuerle, Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach. Phys. Rev. E 78 (2008), # 011103.

    Google Scholar 

  7. S. Havriliak, S. Negami, A complex plane analysis of α-dispersions in some polymer systems. J. Polymer Sci.-Part C: Polymer Symposia 14, No 1 (1966), 99–117.

    Article  Google Scholar 

  8. Y.P. Kalmykov, W.T. Coffey, D.S.F. Crothers and S.V. Titov, Microscopic models for dielectric relaxation in disordered systems. Phys. Rev. E 70 (2004), # 041103-1-11.

    Google Scholar 

  9. A.A. Kilbas, M. Saigo, and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transf. Spec. Funct. 15 (2004), 31–49.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.A. Khamzin, R.R. Nigmatullin, I.I. Popov, Microscopic model of a non-Debye dielectric relaxation: The Cole-Cole law and its generalization. Theoretical and Math. Physics 173, No 2 (2012), 1604–1619.

    Article  Google Scholar 

  11. A.A. Khamzin, R.R. Nigmatullin, I.I. Popov, Log-periodic corrections to the Cole-Cole expression in dielectric relaxation. Physica A 392 (2013), 136–148

    Article  Google Scholar 

  12. A.A. Khamzin, R.R. Nigmatullin, I.I. Popov, B.A. Murzaliev, Microscopic model of dielectric α-relaxation in disordered media. Fract. Calc. Appl. Anal. 16, No 1 (2013), 158–170; DOI: 10.2478/s13540-013-0011-1; http://link.springer.com/article/10.2478/s13540-013-0011-1.

    MathSciNet  Google Scholar 

  13. H. Mori, A continued-fraction representation of the time correlation function. Prog. Theor. Phys. 30 (1965), 399–416.

    Article  Google Scholar 

  14. R.R. Nigmatullin, D. Baleanu, The derivation of the generalized functional equations describing self-similar processes. Fract. Calc. Appl. Anal. 15, No 4 (2012), 718–740; DOI: 10.2478/s13540-012-0049-5; http://link.springer.com/article/10.2478/s13540-012-0049-5.

    MathSciNet  Google Scholar 

  15. R.R. Nigmatullin, Ya.A. Ryabov, Cole-Davidson dielectric relaxation as a self-similar relaxation process. Phys. Solid State 39 (1997), 87–90.

    Article  Google Scholar 

  16. V.V. Novikov, V.P. Privalko, Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure. Phys. Rev. E 64 (2001), # 031504-1-11.

    Google Scholar 

  17. T.R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.

    MATH  MathSciNet  Google Scholar 

  18. S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam (1993).

    MATH  Google Scholar 

  19. V.V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids. Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems. World Scientific Publ. Ltd, Singapore (2013).

    Book  Google Scholar 

  20. K. Weron, A. Jurlewicz, M. Magdziarz, Havriliak-Negami response in the framework of the continuous-time random walk. Acta Phys. Pol B. 36 (2005), 1855–1868.

    Google Scholar 

  21. G. Williams, Use of the dipole correlation function in dielectric relaxation. J. Chem. Rev. 72 (1972), 55–69.

    Article  Google Scholar 

  22. R. Zwanzig, Lectures in Theoretical Physics. Interscience, New York (1961), 135 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Airat A. Khamzin.

About this article

Cite this article

Khamzin, A.A., Nigmatullin, R.R. & Popov, I.I. Justification of the empirical laws of the anomalous dielectric relaxation in the framework of the memory function formalism. fcaa 17, 247–258 (2014). https://doi.org/10.2478/s13540-014-0165-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0165-5

MSC 2013

Key Words and Phrases

Navigation