Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 1, 2006

Energy transport in plasmon waveguides on chains of metal nanoplates

  • W. Saj EMAIL logo , T. Antosiewicz , J. Pniewski and T. Szoplik
From the journal Opto-Electronics Review

Abstract

An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400–2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500–600 nm, this 2-μm long 3D waveguide transmits 39% of incident energy in a channel of λ × λ/2 cross section area.

[1] H. Raether, Surface Plasmons, Springer, Berlin, 1988. 10.1007/BFb0048323Search in Google Scholar

[2] C. Sönnichsen, “Plasmons in metal nanostructures”, PhD Thesis, Ludwig-Maximilians-Universität München, München, 2001. Search in Google Scholar

[3] A.V. Zayats and I.I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons”, J. Opt. A: Pure Appl. Opt. 5, S16–S50 (2003). http://dx.doi.org/10.1088/1464-4258/5/4/35310.1088/1464-4258/5/4/353Search in Google Scholar

[4] W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). http://dx.doi.org/10.1038/nature0193710.1038/nature01937Search in Google Scholar PubMed

[5] D. Sarid, “Long-range surface-plasma waves on very thin metal films”, Phys. Rev. Lett. 47, 1927–1930 (1981). http://dx.doi.org/10.1103/PhysRevLett.47.192710.1103/PhysRevLett.47.1927Search in Google Scholar

[6] J.J. Burke, G.I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films”, Phys. Rev. B33, 5286–5301 (1986). 10.1103/PhysRevB.33.5186Search in Google Scholar PubMed

[7] W.L. Barnes, S.C. Kitson, T.W. Preist, and J.R. Sambles, “Photonic surfaces for surface-plasmon polaritons”, J. Opt. Soc. Am. A14, 1654–1661 (1997). 10.1364/JOSAA.14.001654Search in Google Scholar

[8] M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles”, Opt. Lett. 23, 1331–1333 (1998). Search in Google Scholar

[9] J.R. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F.R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles”, Phys. Rev Lett. 82, 2590–2593 (1999). http://dx.doi.org/10.1103/PhysRevLett.82.259010.1103/PhysRevLett.82.2590Search in Google Scholar

[10] J.C. Weeber, A. Dereux, C. Girard, J.R. Krenn, and J.P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light”, Phys. Rev. B60, 9061–9068 (1999). 10.1103/PhysRevB.60.9061Search in Google Scholar

[11] B. Lamprecht, J.R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F.R. Aussenegg, and J.C. Weeber, “Surface plasmon propagation in microscale metal stripes”, Appl. Phys. Lett. 79, 51–53 (2001). http://dx.doi.org/10.1063/1.138023610.1063/1.1380236Search in Google Scholar

[12] J.C. Weeber, J.R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J.P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes”, Phys. Rev. B, 64045411 (2001). 10.1103/PhysRevB.64.045411Search in Google Scholar

[13] J.C. Weeber, M.U. González, A.L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips”, Appl. Phys. Lett. 87, 221101 (2005). Search in Google Scholar

[14] T. Yatsui, M. Kourogi, and M. Ohtsu, “Plasmon waveguide for optical far/near-field conversion”, Appl. Phys. Lett. 79, 4583–4585 (2001). http://dx.doi.org/10.1063/1.142840510.1063/1.1428405Search in Google Scholar

[15] P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures”, Phys. Rev. B61, 10484–10503 (2000). Search in Google Scholar

[16] R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Skrzek, “Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width”, Opt. Lett. 52, 844–846 (2000). Search in Google Scholar

[17] P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures”, Phys. Rev. B63, 125417 (2001). Search in Google Scholar

[18] R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons”, Opt. Express 13, 977–984 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-3-977. http://dx.doi.org/10.1364/OPEX.13.00097710.1364/OPEX.13.000977Search in Google Scholar

[19] P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface-plasmon polariton waveguides”, J. Appl. Phys. 98, 043109 (2005). Search in Google Scholar

[20] A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M.S. Larsen, and S.I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons”, J. Lightwave Technol. 23, 413–422 (2005). http://dx.doi.org/10.1109/JLT.2004.83574910.1109/JLT.2004.835749Search in Google Scholar

[21] K. Leosson, T. Nikolajsen, A. Boltasseva, and S.I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications”, Opt. Express 14, 314–319 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-1-314. http://dx.doi.org/10.1364/OPEX.14.00031410.1364/OPEX.14.000314Search in Google Scholar PubMed

[22] M.L. Brongersma, J.W. Hartman, and H.A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit”, Phys. Rev. B62, R16356–R16359 (2000). 10.1103/PhysRevB.62.R16356Search in Google Scholar

[23] S.A. Maier, “Guiding of electromagnetic energy in subwavelength periodic metal structures,” PhD Thesis, California Institute of Technology, Pasadena, 2003. Search in Google Scholar

[24] S.A. Maier, P.G. Kik, and H.A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides”, Phys. Rev. B67, 205402 (2003). 10.1103/PhysRevB.67.205402Search in Google Scholar

[25] S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing”, Appl. Phys. Lett. 86, 071103 (2005). Search in Google Scholar

[26] A. Degiron and D.R. Smith, “Numerical simulations of long-range plasmons”, Opt. Express 14, 1611–1625 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1611. http://dx.doi.org/10.1364/OE.14.00161110.1364/OE.14.001611Search in Google Scholar PubMed

[27] W. Saj, “FDTD simulations of 2D plasmon waveguide on silver nanorods in hexagonal lattice”, Opt. Express 13, 4818–4827 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4818. http://dx.doi.org/10.1364/OPEX.13.00481810.1364/OPEX.13.004818Search in Google Scholar PubMed

[28] W.M. Saj, T.J. Antosiewicz, J. Pniewski, and T. Szoplik, “Plasmon waveguides on silver nanoelements”, Proc. SPIE 6195, 227–237 (2006). Search in Google Scholar

[29] L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration”, Opt. Express 13, 6645–6650 (2005). http://www.opticsinfobase.org/abstract.scfm?URI=oe-13-17-6645. http://dx.doi.org/10.1364/OPEX.13.00664510.1364/OPEX.13.006645Search in Google Scholar PubMed

[30] R. Zia, M.D. Selker, P.B. Catrysse, and M.L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes”, J. Opt. Soc. Amer. A21, 2442–2446 (2004). http://dx.doi.org/10.1364/JOSAA.21.00244210.1364/JOSAA.21.002442Search in Google Scholar PubMed

[31] J.A. Dionne, L.A. Sweatlock, H.A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization”, Phys. Rev. B73, 035407 (2006). Search in Google Scholar

[32] A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, 2000. Search in Google Scholar

[33] P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). 10.1103/PhysRevB.6.4370Search in Google Scholar

[34] D. Gerace and L. Andreani, “Low-loss guided modes in photonic crystal waveguides”, Opt. Express 13, 4939–4951 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-13-4939. http://dx.doi.org/10.1364/OPEX.13.00493910.1364/OPEX.13.004939Search in Google Scholar

Published Online: 2006-9-1
Published in Print: 2006-9-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0032-y/html
Scroll to top button