Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 1, 2006

Towards focusing using photonic crystal flat lens

  • N. Fabre EMAIL logo , S. Fasquel , C. Legrand , X. Mélique , M. Muller , M. François , O. Vanbésien and D. Lippens
From the journal Opto-Electronics Review

Abstract

We report on the numerical simulation and fabrication of a two-dimensional flat lens based on negative refraction in photonic crystals. The slab acting as a lens is made of an hole array (operating at the wavelength of 1.5 μm) etched in a InP/InGaAsP/InP semiconductor layer. We first study the key issues for the achievement of a negative refractive index taking advantage of folding of dispersion branches with main emphasis in dispersion properties rather than the opening of forbidden gaps. The diffraction and refraction regimes are analysed according to the comparison of the wave-vector with respect to the relevant dimensions of the hole array. In the second stage, we illustrate technological challenges in terms of e-beam lithography on a sub-micron scale and deep reactive ion etching for an indium phosphide based technology.

[1] J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 1995. Search in Google Scholar

[2] S. Fasquel, “Propriétés optiques de structures guidantes en cristal photonique”, Thèse Doctorat d’Electronique, Université des Sciences et Technologies de Lille, 2005. (in French) Search in Google Scholar

[3] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refraction like behaviour in the vicinity of the photonic band gap”, Phys. Rev. Lett. B62, 10696–10705 (2000). Search in Google Scholar

[4] C. Luo, S.G. Johnson, J.D. Joannopoulos, and J.B. Pendry, “All-angle negative refraction without negative index”, Phys. Rev. Lett. B62, 201104 (2002). 10.1103/PhysRevB.65.201104Search in Google Scholar

[5] X. Hu and T. Chan, “Photonic crystals with silver nanowires as a near-infrared superlens”, Appl. Phys. Lett., 85, 1520–1522 (2004). http://dx.doi.org/10.1063/1.178488310.1063/1.1784883Search in Google Scholar

[6] V.G. Veselago, “Some remarks regarding electrodynamics of materials with negative refraction”, Appl. Phys. B81, 403–407 (2005). 10.1007/s00340-005-1912-4Search in Google Scholar

[7] J.B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966–3969 (2000). http://dx.doi.org/10.1103/PhysRevLett.85.396610.1103/PhysRevLett.85.3966Search in Google Scholar PubMed

[8] C. Luo, S.G. Jonhson, J.D. Joannopoulos, and J.B. Pendry, “Subwavelength imaging in photonic crystals”, Phys. Rev. Lett. B68, 045115 (2003). 10.1103/PhysRevB.68.045115Search in Google Scholar

[9] M. Perrin, S. Fasquel, T. Decoopman, X. Mélique, O. Vanbésien, E. Lheurette, and D. Lippens, “Left-handed electromagnetism obtained via nanostructured metamaterials: comparison with that from microstructured photonic crystals”, J. Opt. A: Pure Appl. Opt. 7, S3–11 (2005). http://dx.doi.org/10.1088/1464-4258/7/2/R0110.1088/1464-4258/7/2/R01Search in Google Scholar

[10] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopolou, and C.M. Soukoulis, “Subwavelength resolution in a two-dimensional photonic-crystal-based superlens”, Phys. Rev. Lett. 91, 207401 (2003). Search in Google Scholar

[11] P.V. Parimi, W.T. Lu, P. Vodo, J. Sokoloff, J.S. Derov, and S. Sridhar, “Negative refraction and left-handed electromagnetism in microwave photonic crystals”, Phys. Rev. Lett. 92, 127401 (2004). Search in Google Scholar

[12] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Annad, “Negative refraction at infrared wavelengths in a two-dimensional photonic crystal”, Phys. Rev. Lett. 93, 073902 (2004). Search in Google Scholar

[13] E. Schonbrun, T. Yamashita, W. Park, and C.J. Summers, “Negative-index imaging by an index-matched photonic crystal slab”, Phys. Rev. B73, 195117 (2006). 10.1103/PhysRevB.73.195117Search in Google Scholar

[14] K. Guven, K. Aydin, K.B. Alici, C.M. Soukoulis, and E. Ozbay, “Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens”, Phys. Rev. B70, 205125 (2004). 10.1103/PhysRevB.70.205125Search in Google Scholar

[15] S. Fasquel, X. Mélique, O. Vanbésien, and D. Lippens, “Three-dimensional calculation of propagation losses in photonic crystal waveguides”, Optics Comm. 246, 91–6 (2005). http://dx.doi.org/10.1016/j.optcom.2004.10.07510.1016/j.optcom.2004.10.075Search in Google Scholar

[16] D. Lauvernier, S. Garidel, C. Legrand, and J.P. Vilcot, “Realization of sub-micron patterns on GaAs using a HSQ etching mask”, Microelectron. Eng. 77, 210–216 (2005). http://dx.doi.org/10.1016/j.mee.2004.11.00210.1016/j.mee.2004.11.002Search in Google Scholar

[17] A. Jeyakumar, “Development of inorganic resists for electron beam litrography, novel materials, and simulations”, Doctor of Philosophy Thesis, Georgia Institute of Technology, 2004. Search in Google Scholar

[18] J.S. Yu and Y.T. Lee, “Parametric reactive ion etching of InP using Cl2 and CH4 gases: effects of H2 and Ar addition”, Semicond. Sci. Technol. 17, 230–236 (2002). http://dx.doi.org/10.1088/0268-1242/17/3/30910.1088/0268-1242/17/3/309Search in Google Scholar

[19] www.oichina.cn/product/oipt/papers/InPProduction.pdf Search in Google Scholar

[20] L. Berguiga, “Etude et réalisation d’un microscope en champ proche sous asservissement de type shear-force. Application à l’étude en champ proche du vieillissement de fibres optiques”, Thesis, Université de Bourgogne, 2001. (in French). Search in Google Scholar

[21] B. Cluzel, D. Gérard, E. Picard, T. Charvolin, F. de Fornel, and E. Hadji, “Sub-wavelength imaging of field confinement in an integrated waveguide photonic crystal microcavity”, J. Appl. Phys. 98, 86109-1–3 (2005). 10.1063/1.2115090Search in Google Scholar

Published Online: 2006-9-1
Published in Print: 2006-9-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0030-0/html
Scroll to top button