Skip to main content

Advertisement

Log in

Inland salt areas of Southeast Serbia: ecological preferences of certain representatives of flora

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Simultaneous monitoring of vegetation and soil of inland salt areas of Southeastern Serbia was performed in order to assess the univariate response of species along the environmental gradients. Five habitat types were recognized by classification analysis based on physicochemical characteristics of soil. Ecological preferences of 9 species recognized as diagnostic of established habitats were estimated by Huisman-Olff-Fresco models. Carex distans, Cynod on dactylon and Plantago coronopus are diagnostic species of habitat type I which is characterized by electrical conductivity lower than 500 μScm−1, slightly alkaline reaction and low concentration of nutrients. Habitats of type II with alkaline soil, where concentration of available potassium (53 mg K2O/100 g soil) and phosphorus (19 mg P2O5/100 g soil) is high and electrical conductivity is in range of 608 to 860 μScm−1, are suitable for Carex divisa, Juncus compressus and Limonium gmelinii. Puccinellia festuciformis shows affinities to habitats of type III, characterized by electrical conductivity of 1200–2800 μScm−1 and low water and nutrient content. Presence of Camphorosma monspeliaca on habitats (type IV) indicates high concentration of OH ions, salts (>3000 μScm−1) and chlorides in soil. Puccinellia distans shows affinities to strongly saline, alkaline and nutrient rich habitats (type V) with fluctuating water regime during the vegetation season. Information on objectively assessed ecological preferences of plant species represents a suitable foundation for defining local or regional indicator systems, calibration of existing ecological indices and realization of procedures with the goal of conservation and enhancement of threatened ecosystems such as inland salt areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al Hassan M, Pacurar A, Gaspar A, Vicente O, Boscaiu M (2014) Growth and reproductive success under saline conditions of three Plantago species with different levels of stress tolerance. Not bot Horti Agrobo 42(1):180–186. https://doi.org/10.15835/nbha4219349

    Article  Google Scholar 

  • Babalonas D (1979) Phytosociological research of the vegetation of the delta of the river Evros (Ainision Delta). Thesis, Thessaloniki: 158 pp. (in Greek)

  • Balkovič J, Kollar J, Šimonovič V (2012) Experience with using Ellenberg’s R indicator values in Slovakia: oligotrophic and mesotrophic submontane broad-leaved forests. Biologia 67(3):474–482. https://doi.org/10.2478/s11756-012-0027-8

    Article  Google Scholar 

  • Bosiacka B, Podlasinski M, Pienkowski P (2011) Salt marshes determined by ascending brine in northern Poland: land-use changes and vegetation-environment relations. Phytocoenologia 41(3):201–213. https://doi.org/10.1127/0340-269X/2011/0041-0463

    Article  Google Scholar 

  • Braun-Blanquet J (1951) Pflanzensoziologie. Springer, Vienna

    Google Scholar 

  • Bui EN, Henderson BL (2003) Vegetation indicators of salinity in northern Queensland. Austral Ecol 28:539–552. https://doi.org/10.1046/j.1442-9993.2003.01311.x

    Article  Google Scholar 

  • Cantero JJ, Cisneros JM, Zobel M, Cantero A (1998) Environmental relationships of vegetation patterns in salt marshes of Central Argentina. Folia Geobot 33:133–145. https://doi.org/10.1007/BF02913341

    Article  Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90. https://doi.org/10.1658/1100-9233(2002)013[0079:DODSWS]2.0.CO;2

    Article  Google Scholar 

  • Clarke K, Gorley R (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E Ltd.: Plymouth Marine Laboratory, UK

    Google Scholar 

  • Dítě D, Eliáš P, Šuvada R (2009) The current distribution and status of community Puccinellietum limosae in Slovakia. Thaiszia - J Bot 19:63–70

    Google Scholar 

  • Dítĕ D, Eliáš P, Melečková Z (2016) Carex divisa in Slovakia: overlooked or rare sedge species? Hacquetia 16(1):5–12. https://doi.org/10.1515/hacq-2016-0010

    Article  Google Scholar 

  • Egner H, Riehm H (1958) Untersuchungen über die chemische Bodenanalyse als grundlage für die Beurteilung des Nährstoffzustandes der Boden II: Chemische Extraktionsmethoden zur Phosphor und Kaliumbestimmung Kungl. Lantbrukshägskolons Annaler 26:57–63

    Google Scholar 

  • Eliáš P, Sopotlieva D, Díté D, Hájková P, Apostolova I, Senko D, Melečková Z, Hájek M (2013) Vegetation diversity of salt-rich grasslands in Southeast Europe. Appl Veg Sci 16:521–537. https://doi.org/10.1111/avsc.12017

    Article  Google Scholar 

  • Erdei L, Kuiper PJC (1979) The effect of salinity on growth, cation content, Na+-uptake and translocation in salt-sensitive and salt-tolerant Plantago species. Physiol Plantarum 47:95–99. https://doi.org/10.1111/j.1399-3054.1979.tb03197.x

    Article  CAS  Google Scholar 

  • Esmaeili MM, Sattarian A, Bonis A, Bouzillé JB (2009) Ecology of seed dormancy and germination of Carex divisa Huds.: effects of stratification, temperature and salinity. Int J Plant Prod 3(2):27–40. https://doi.org/10.22069/IJPP.2012.639

    Article  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Gillham ME (1953) An Ecological Account of the Vegetation of Grassholm Island, Pembrokeshire. J Ecol 41(1):84

    Article  Google Scholar 

  • Godefroid S, Dana ED (2007) Can Ellenberg's indicator values for Mediterranean plants be used outside their region of definition? J Biogeogr 34(1):62–68. https://doi.org/10.1111/j.1365-2699.2006.01582.x

    Article  Google Scholar 

  • González-Alcaraz MN, Jiménez-Cárceles FJ, Álvarez Y, Álvarez-Rogel J (2014) Gradients of soil salinity and moisture, and plant distribution, in a Mediterranean semiarid saline watershed: a model of soil–plant relationships for contributing to the management. Catena 115:150–158. https://doi.org/10.1016/j.catena.2013.11.011

    Article  CAS  Google Scholar 

  • Grigore MN, Toma C (2017) Anatomical adaptations of halophytes: a review of classic literature and recent findings. Springer International Publishing, Cham

    Book  Google Scholar 

  • Grigore MN, Villanueva M, Boscaiu M, Vicente O (2012) Do halophytes really require salts for their growth and development? An experimental approach. Notulae Scientia Biologicae 4(2):23–29. https://doi.org/10.15835/nsb.4.2.7606

    Article  CAS  Google Scholar 

  • Grigore MN, Ivanescu L, Toma C (2014) Halophytes: an integrative anatomical study. Springer International Publishing, Cham

    Google Scholar 

  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. Flora 203:683–694. https://doi.org/10.1016/j.flora.2007.11.005

    Article  Google Scholar 

  • Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models for species response analysis. J Veg Sci 4:37–46. https://doi.org/10.2307/3235732

    Article  Google Scholar 

  • Hulisz P (2005) Wieloaspektowe badania gleb zasolonych w Polsce pod kątem weryfikacji ich pozycji systematycznej. Praca doktorska – manuskrypt, UMK Toruń

    Google Scholar 

  • ISO 11465 (1993) Soil quality - Determination of dry matter and water content on a mass basis – Gravimetric method

  • Jafari M, Chahouki MAZ, Tavili A, Azarnivand H (2003) Soil-vegetation in hon-e-Soltan region of Qom Province, Iran. Pak J Nut 2:329–334. https://doi.org/10.3923/pjn.2003.329.334

    Article  Google Scholar 

  • Jenačković D, Zlatković I, Lakušić D, Ranđelović V (2016) Macrophytes as bioindicators of the physicochemical characteristics of wetlands in lowland and mountain regions of the Central Balkan Peninsula. Aquat Bot 134:1–9. https://doi.org/10.1016/j.aquabot.2016.06.003

    Article  CAS  Google Scholar 

  • Jenačković D, Lakušić D, Zlatković I, Jušković M, Ranđelović V (2019) Emergent wetland vegetation data recording: does an optimal period exist? Appl Veg Sci 22(2):200–212. https://doi.org/10.1111/avsc.12419

    Article  Google Scholar 

  • Josifović M (ed) (1970–1980) Flora of Serbia I-X. SANU, Belgrade

  • Josifović M (ed) (1972) Flora of Serbia III. SANU, Belgrade

    Google Scholar 

  • Josifović M (ed) (1974) Flora of Serbia VI. SANU, Belgrade

    Google Scholar 

  • Josifović M (ed) (1976) Flora of Serbia VIII. SANU, Belgrade

    Google Scholar 

  • Kenkel NC, McIlraith AL, Burchill CA, Jones G (1991) Competition and the response of three plant species to a salinity gradient. Can J Botany 69(11):2497–2502. https://doi.org/10.1139/b91-310

    Article  Google Scholar 

  • Kiehl K, Esselnik P, Bakker JP (1997) Nutrient limitation and plant species composition in temperate salt marshes. Oecologia 111:325–330. https://doi.org/10.1007/s004420050242

    Article  CAS  PubMed  Google Scholar 

  • Kojić M, Popović R, Karadžić B (1997) Vaskularne biljke kao indikatori staništa. Institut za biološka istraživanja „Siniša Stanković”, Beograd

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146. https://doi.org/10.1016/j.envexpbot.2005.02.001

    Article  CAS  Google Scholar 

  • Le Houerou HN (1993) Salt-tolerant plants for the arid regions of the Mediterranean isoclimatic zone. In: Lieth H, Masoom AA (eds) Towards the rational use of high salinity tolerant plants. Kluwer Academic Publishers, Dordrecht, pp 403–422

    Chapter  Google Scholar 

  • Li WQ, Xiao-Jing L, Khan MA, Gul B (2008) Relationship between soil characteristics and halophytic vegetation in coastal region of North China. Pak J Bot 40(3):1081–1090

    CAS  Google Scholar 

  • Méndez E (1983) Observaciones sobre flora adventicia de viñedos en Mendoza. Parodiana 2(2):263–276

  • Micevski K (1957) Typologische Gliederung der Niederungswiesen und Sumpfvegetation Mazedoniens. Folia Balcánica 1/6. Skopje.

  • Milosavljević V, Ranđelović V, Zlatković B (2002) Vegetacija Lalinačke slatine kod Niša. 7. Simpozijum o flori Srbije i susednih područja. Zbornik rezimea, 47, Dimitrovgrad

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:1–10. https://doi.org/10.3389/fpls.2017.00829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micevski K (1965) Halofitska vegetacija Ovčeg polja. Acta Mus Maced Sci Nat 10:67–90

  • Niketić M (1995) Pregled flore šireg područja Lalinačke slatine kod Niša. II Simpozijum o flori Srbije (IV Simpozijum o flori jugoistočne Srbije). Zbornik rezimea, 34, Vranje

  • O’Leary JW, Glenn EP (1994) Global distribution and potential for halophytes. In: Squiers VR, Ayoub AT (eds) Halophytes as resource for livestock and rehabilitation of degraded lands. Springer, Dordrecht, pp 7–17

    Chapter  Google Scholar 

  • Pan D, Bouchard A, Legendre P, Domon G (1998) Influence of edaphic factors on the spatial structure of inland halophytic communities: a case study in China. J Veg Sci 9:797–804. https://doi.org/10.2307/3237045

    Article  Google Scholar 

  • Pančić J (1884) Dodatak flori Kneževine Srbije. Kraljevska Srpska državna štamparija, Beograd

    Google Scholar 

  • Piernik A (2003) Inland halophilous vegetation as indicator of soil salinity. Basic Appl Ecol 4:525–536. https://doi.org/10.1078/1439-1791-00154

    Article  Google Scholar 

  • Piernik A (2012) Ecological pattern of inland salt marsh vegetation in Central Europe. Wydawnictwo Naukowe, Uniwersytetu Mikołaja Kopernika, Toruń

  • Piernik A, Hulisz P, Rokicka A (2015) Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil Sci Plant Nutr 61:98–112. https://doi.org/10.1080/00380768.2015.1028874

    Article  CAS  Google Scholar 

  • Rana RS, Parkash V (1987) Floristic characterisation of alkali soils in northwestern India. Plant Soil 99:447–451. https://doi.org/10.1007/BF02370890

    Article  Google Scholar 

  • Ranđelović V, Amidžić L, Ilić N (2000) Halofitska vegetacija okoline Prokuplja. 6. Simpozijum o flori jugoistočne Srbije i susednih područja Zbornik rezimea, 39, Sokobanja

  • Ranđelović V, Zlatković B, Dimitrijević D (2007) Phytogeographical analysis of the flora of Lalinačka salt marsh. Proceeding of the 9th symposium on flora of southeastern Serbia and Neighbouring regions, Niš (Serbia), 73-82

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne

    Google Scholar 

  • Richards LA (ed) (1954) Diagnosis and improvement of saline and alkali soils. Agriculture handbook no. 60. United States Department of Agriculture, Washington

  • Rogel JA, Ariza FA, Silla RO (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20(2):357–372. https://doi.org/10.1672/0277-5212(2000)020[0357:SSAMGA]2.0.CO;2

    Article  Google Scholar 

  • Soó R (1933) Floren- und Vegetationskarte des historischen Ungarns. Debr Honism Biz. 8/30

  • Slavnić, Ž (1940) Prilog halofitskoj flori i vegetaciji Jugoistočne Srbije. Glasnik skopskog naučnog društva XXII:65–77

  • Slavnić Ž (1948) Slatinska vegetacija Vojvodine. Arhiv za poljoprivredne nauke i tehniku (Beograd) 3(4):76–142

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13(3):451–453. https://doi.org/10.1111/j.1654-1103.2002.tb02069.x

    Article  Google Scholar 

  • Tichý L, Chytrý M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818. https://doi.org/10.1111/j.1654-1103.2006.tb02504.x

    Article  Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1964-1980) Flora Europaea, I-V. Cambridge University Press, London

    Google Scholar 

  • Uğurlu E, Oldeland J (2012) Species response curves of oak species along climatic gradients in Turkey. Int J Biometeorol 56:85–93. https://doi.org/10.1007/s00484-010-0399-9

    Article  PubMed  Google Scholar 

  • Van Reeuwijk LP (2002) Procedures for soil analysis (6th edition). ISRIC technical paper 9, Wageningen, the Netherlands

  • Wamelink GW, Goedhart PW, Van Dobben HF, Berendse F (2005) Plant species as predictors of soil pH: replacing expert judgement with measurements. J Veg Sci 16(4):461–470. https://doi.org/10.1111/j.1654-1103.2005.tb02386.x

    Article  Google Scholar 

  • Zlatković B, Ranđelović V, Amidzić L (2003) Flora, vegetation and conservation of Aleksandrovac's salt marsh. Third international Balkan botanical congress. Abstracts, 134, Sarajevo

  • Zlatković B, Ranđelović V, Amidžić L (2005) Flora and vegetation of salt marsh in central and southern Serbia and their valorisation in terms of protection, report, Institute for Nature Conservation of. Serbia, Belgrade

    Google Scholar 

  • Zlatković I, Zlatković B, Ranđelović V, Jenačković D, Amidžić L (2014) Taxonomical, phytogeographical and ecological analysis of the salt marsh flora of central and southern Serbia. Biologica Nyssana 5(2):91–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana D. Zlatković.

Ethics declarations

Conflict of interest disclosure

The authors, whose names are listed immediately below, certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zlatković, I.D., Jenačković, D.D. & Ranđelović, V.N. Inland salt areas of Southeast Serbia: ecological preferences of certain representatives of flora. Biologia 74, 1425–1440 (2019). https://doi.org/10.2478/s11756-019-00320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-019-00320-0

Keywords

Navigation