Skip to main content

Advertisement

Log in

Oribatida (Acari) communities in arable soils formed under waterlogged conditions: the influence of a soil moisture gradient

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Oribatid mites make up a dominant group of soil mesofauna. These microarthropods are quite rarely researched in heavy clay soils, and their seasonal dynamics has never been studied thoroughly during the year in such an environment. The research was conducted in 1994–1995 at three sites along a small-scale moisture gradient, with the aim of describing the influence of different moisture conditions on this soil mesofaunal group and evaluating their seasonal dynamics regarding temperature and soil humidity fluctuations. The study area was characterized by a land depression in a field with clay soil, where waterlogged periods occurred, in the Eastern Slovak Lowland (Slovakia). The investigations were based on 24,890 oribatid adults from 72 species. The mean abundance and total species richness of Oribatida increased with increasing soil moisture towards the lower part of the land depression. The abundance and number of species reached a maximum at the bottom site (ca. 8000 ind.m−2 and 59 species) and was two-fold greater than at the summit site. The mean oribatid abundance and the mean species richness between the sites were compared, and significant differences were found on almost all sampling occasions, but the patterns of changes along the moisture gradient differed between study years. The seasonal fluctuations of oribatid abundance within the sites showed a pattern with spring and autumn maxima and a summer minimum only at moist depression bottom. Seasonal changes in the oribatid community composition were more pronounced at sites with lower soil moisture. Specific communities consisting of hygrophilous or eurytopic species and located at the bottom and slope sites of the depression clearly differed from those of the summit site, where xerotolerant species predominated. Ordination analysis confirmed the influence of temperature and precipitation on the species community composition. The bottom and slope site communities were dominated by the species combination of hygrophilous Microppia minus, Oxyoppia europaea and hygrotolerant Oppiella nova, while at the summit site these mites were replaced by more xerotolerant species: Ramusella insculpta, Oppiella obsoleta and Tectocepheus velatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Assiuty A-NIM, Khalil MA, Ismail A-WA, van Straalen NM, Ageba MF (2014) Effects of fungicides and biofungicides on population density and community structure of soil oribatid mites. Sci Total Environ 466–467:412–420. https://doi.org/10.1016/j.scitotenv.2013.07.063

    Article  CAS  PubMed  Google Scholar 

  • Arroyo J, Iturrondobeitia JC (2006) Differences in the diversity of oribatid mite communities in forests and agrosystems lands. Eur J Soil Biol 42:259–269. https://doi.org/10.1016/j.ejsobi.2006.01.002

    Article  Google Scholar 

  • Barabas D (1999) Závislosť zmien vlhkosti pôd v podmienkach ťažkých pôd hraňského systému (Changes of soil moisture in heavy soils of Hraň microbasin). In: Minár J, Trizna M (eds) Theoretical-methodological problems of geography, related disciplines and their applications. Comenius University, Bratislava, pp 301–305. [in Slovak]

  • Barabas D, Miklisová D, Kupčo M (1998) Vzťah podzemných a povrchových vôd v ťažkých pôdach [interactions between groundwater and surface water in heavy soils]. Folia Geogr 30:142–151. [in Slovak]

  • Bates RL, Jackson JA (1987) Glossary of geology. American Geological Institute, Alexandria

    Google Scholar 

  • Bedano JC, Cantú MP, Doucet ME (2006) Influence of three different land management practices on soil mite (Arachnida: Acari) densities in relation to a natural soil. Appl Soil Ecol 32:293–304. https://doi.org/10.1016/j.apsoil.2005.07.009

    Article  Google Scholar 

  • Behan-Pelletier VM (1999) Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric Ecosyst Environ 74:411–423. https://doi.org/10.1016/S0167-8809(99)00046-8

    Article  Google Scholar 

  • Bosch-Serra ÀD, Padró R, Boixadera-Bosch RR, Orobitg J, Yagüe MR (2014) Tillage and slurry over-fertilization affect oribatid mite communities in a semiarid Mediterranean environment. Appl Soil Ecol 84:124–139. https://doi.org/10.1016/j.apsoil.2014.06.010

    Article  Google Scholar 

  • Buşmachiu G, Kováč Ľ, Miklisová D, Weiner WM (2017) Riparian Collembola (Hexapoda) communities of northern Moldova, Eastern Europe. ZooKeys 724:119–134. https://doi.org/10.3897/zookeys.724.12

    Article  Google Scholar 

  • Cao Z, Han X, Hu C, Chen J, Zhang D, Steinberger Y (2011) Changes in the abundance and structure of a soil mite (Acari) community under long-term organic and chemical fertilizer treatments. Appl Soil Ecol 49:131–138. https://doi.org/10.1016/j.apsoil.2011.06.003

    Article  Google Scholar 

  • Chesworth W (2008) Encyclopedia of soil science. Springer, New York

    Book  Google Scholar 

  • Clapperton MJ, Kanashiro DA, Behan-Pelletier VM (2002) Changes in abundance and diversity of microarthropods associated with fescue prairie grazing regimes. Pedobiologia 46:496–511. https://doi.org/10.1078/0031-4056-00155

    Article  Google Scholar 

  • Corral-Hernández E, Balanzategui I, Iturrondobeitia JC (2016) Effect of progressive drying of pedunculate oak (Quercus robur L.) and holm oak (Quercus rotundifolia lam.) forest soils on the composition of the oribatid mite community (Acari: Oribatida) in laboratory conditions. Int J Acarol 42:1–8. https://doi.org/10.1080/01647954.2016.1194470

    Article  Google Scholar 

  • Crossley DA Jr, Blair JM (1991) A high-efficiency, “low-technology” Tullgren-type extractor for soil microarthropods. Agric Ecosyst Environ 34:187–192. https://doi.org/10.1016/0167-8809(91)90104-6

    Article  Google Scholar 

  • Donaldson GM (1996) Oribatida (Acari) associated with three species of Sphagnum at spruce hole bog, New Hampshire, U.S.A. Can J Zool 74:1706–1712. https://doi.org/10.1139/z96-188

  • Fujita M, Fujiyama S (2001) How can the minor species, Tectocepheus minor (Oribatida), dominate T. velatus in a no-tillage crop field? Pedobiologia 45:36–45

    Article  Google Scholar 

  • Gergócs V, Hufnagel L (2009) Application of Oribatid mites as indicators. Appl Ecol Environ Res 7:79–98

    Article  Google Scholar 

  • Gergócs V, Garamvölgyi Á, Homoródi R, Hufnagel L (2011) Seasonal change of oribatid mite communities (Acari, Oribatida) in three different types of microhabitats in an oak forest. Appl Ecol Environ Res 9(2):181–195

    Article  Google Scholar 

  • Graczyk R, Seniczak S, Bukowski G, Chachaj B (2011) Preliminary studies on the mite fauna (Acari) from mosses covering the roofs of buildings in Bydgoszcz (Poland). In: Indykiewicz P, Jerzak L, Böhner J, Kavanagh B (eds) Urban Fauna. Studies of animal biology, ecology and conservation in European cities. Uniwersytet Technologiczno-Przyrodniczy w Bydgoszcz, Bydgoszcz, pp 83–90

    Google Scholar 

  • Gulvik ME (2007) Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Pol J Ecol 55:415–440

    Google Scholar 

  • Haase D, Neumeister H (2001) Anthropogenic impact on fluvisols in German floodplains. Ecological processes in soils and methods of investigation. Int Agrophys 15:19–26

    Google Scholar 

  • Hansen RA (2000) Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology 81:1120–1132. https://doi.org/10.1890/0012-9658(2000)081[1120:EOHCAC]2.0.CO;2

    Article  Google Scholar 

  • Höpperger M, Schatz H (2013) Hornmilben (Acari, Oribatida) von Castelfeder (Südtirol, Italien). Gredleriana 13:71–98

    Google Scholar 

  • Hülsmann A, Wolters V (1998) The effects of different tillage practices on soil mites, with particular reference to Oribatida. Appl Soil Ecol 9:327–332. https://doi.org/10.1016/S0929-1393(98)00084-5

    Article  Google Scholar 

  • Irmler U (2004) Long-term fluctuation of the soil fauna (Collembola and Oribatida) at groundwater-near sites in an alder wood. Pedobiologia 48:349–363. https://doi.org/10.1016/j.pedobi.2004.04.001

    Article  Google Scholar 

  • Irmler U (2006) Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. Eur J Soil Biol 42:51–62. https://doi.org/10.1016/j.ejsobi.2005.09.016

    Article  Google Scholar 

  • Ivan O, Călugăr A (2013) Peculiarities of the edaphic mesofauna in some cultivated soils from the central Moldavian plateau. Lucrări Ştiinţifice Seria. Agronomie 56(2):125–130

    Google Scholar 

  • Kaneko H (1988) Life history of Oppiella nova (Oudemans) (Oribatei) in cool temperate forest soils in Japan. Acarol 29:215–221

    Google Scholar 

  • Karasawa S, Hijii N (2008) Vertical stratification of oribatid (Acari: Oribatida) communities in relation to their morphological and life-history traits and tree structures in a subtropical forest in Japan. Ecol Res 23:57–69. https://doi.org/10.1007/s11284-007-0337-4

    Article  Google Scholar 

  • Králová M, Dražďák K, Pospíšil F, Hadačová V, Klozová E, Luštinec J, Kutáček M, Sahulka J (1991) Vybrané metody chemické analýzy půd a rostlin. Academia, Prague. [in Czech]

  • Kubíková J (1970) Geobotanické praktikum. Státní pedagogické nakladatelství, Prague. [in Czech]

  • Kunst M (1971) Nadkohorta pancířníci – Oribatei. In: Daniel M, Černý V (eds) Klíč zvířeny ČSSR. Díl IV. Academia, Prague, pp 531–580. [in Czech]

  • Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WER (2012) Active dispersal of oribatid mites into young soils. Appl Soil Ecol 55:10–12. https://doi.org/10.1016/j.apsoil.2011.12.003

    Article  Google Scholar 

  • Lóšková J, Ľuptáčik P, Miklisová D, Kováč Ľ (2013) Community structure of soil Oribatida (Acari) 2 years after windthrow in the high Tatra Mountains. Biologia 68:932–940. https://doi.org/10.2478/s11756-013-0223-1

    Article  Google Scholar 

  • Losos B, Gulička J, Lellák J, Pelikán J (1984) Ekologie živočichů. Státní pedagogické nakladatelství, Prague. [in Czech]

  • Ľuptáčik P, Miklisová D, Kováč Ľ (2012) Diversity and community structure of soil Oribatida (Acari) in an arable field with alluvial soils. Eur J Soil Biol 50:97–105. https://doi.org/10.1016/j.ejsobi.2011.12.008

    Article  Google Scholar 

  • Luxton M (1981) Studies on the oribatid mites of a Danish beech wood soil. V. Vertical distribution. Pedobiologia 21:365–386

    Google Scholar 

  • Mahunka S (1982) Three new Oribatid species (Acari) from Hungary. Annls Hist Nat Mus Natn Hung 74:295–299

    Google Scholar 

  • Mahunka S, Mahunka-Papp L (2004) A catalogue of the Hungarian oribatid mites (Acari: Oribatida). Hungarian Natural History Museum and Systematic Zoology Research Group of the Hungarian Academy of Sciences, Budapest

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383. https://doi.org/10.1111/j.1600-0587.2000.tb00294.x

    Article  Google Scholar 

  • Mašán P, Mihál I (2009) Pavúkovce Cerovej vrchoviny [arachnids of the Cerová Vrchovina Highland]. Štátna ochrana prírody SR, Ústav zoológie SAV, Ústav ekológie lesa SAV, Banská Bystrica, Bratislava, Zvolen. [in Slovak]

  • McCune B, Mefford MJ (2016) PC-ORD. Multivariate analysis of ecological data. Version 7.02

  • Miko L (1993) Effects of poplar windbreaks on soil arthropod communities in heavy soil agroecosystems of East Slovakia. 2. Oribatid communities (Acarina, Oribatida). Ecology (Bratislava) 12:163–178

  • Miko L (2016a) Oribatid mites may actively migrate faster and over longer distances than anticipated: experimental evidence for Damaeus onustus (Acari: Oribatida). Soil Org 88(3):155–164

    Google Scholar 

  • Miko L (2016b) Oribatid mites (Acari: Oribatida) of the Czech Republic. Revised check-list with a proposal for Czech oribatid nomenclature. Klapalekiana 52 (Supplementum):1–302

  • Minor MA, Cianciolo JM (2007) Diversity of soil mites (Acari Oribatida, mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35:140–153. https://doi.org/10.1016/j.apsoil.2006.05.004

    Article  Google Scholar 

  • Minor MA, Ermilov SG, Philippov DA, Prokin AA (2016) Relative importance of local habitat complexity and regional factors for assemblages of oribatid mites (Acari: Oribatida) in Sphagnum peat bogs. Exp Appl Acarol 70(3):275–286. https://doi.org/10.1007/s10493-016-0075-9

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version 2.4–6. https://CRAN.R-project.org/package=vegan. Accessed 18 June 2018

  • Önen Ö, Koç K (2011) Seasonal and vertical distribution of Acarina Fauna of grassland. Çan Univ J Sci Eng 8:277–289

    Google Scholar 

  • Osler GHR, Murphy DV (2005) Oribatid mite species richness and soil organic matter fractions in agricultural and native vegetation soils in Western Australia. Appl Soil Ecol 29:93–98. https://doi.org/10.1016/j.apsoil.2004.09.002

    Article  Google Scholar 

  • Pande YD, Berthet P (1975) Observations on the vertical distribution of soil Oribatei in a woodland soil. Trans R Entomol Soc Lond 127:259–275. https://doi.org/10.1111/j.1365-2311.1975.tb00575.x

    Article  Google Scholar 

  • Pavlitshenko PG (1994) Opredelitel ceratozetoidnykh kleshtchey (Oribatei, Ceratozetoidea) Ukrainy [a guide to the Ceratozetoid mites (Oribatei, Ceratozetoidea) of Ukraine]. Ukrainian National Academy of Sciences, Schmalhausen Institute of Zoology, Kiev. [in Russian]

  • Perdue JC, Crossley DA Jr (1990) Vertical distribution of soil mites (Acari) in conventional and no-tillage agricultural systems. Biol Fertil Soils 9:135–138. https://doi.org/10.1007/BF00335796

    Article  Google Scholar 

  • Pflug A, Wolters V (2001) Influence of drought and litter age on Collembola communities. Eur J Soil Biol 37:305–308

    Article  Google Scholar 

  • Popp E (1970) Communities of moss mites (Oribatei) in a gradient area. Oikos 21:236–240. https://doi.org/10.2307/3543679

    Article  Google Scholar 

  • Price DW, Benham GS Jr (1977) Vertical distribution of soil-inhabiting microarthropods in an agricultural habitat in California. Environ Entomol 6:575–580. https://doi.org/10.1093/ee/6.4.575

    Article  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 18 June 2018

  • Russell DJ, Hauth A, Fox O (2004) Community dynamics of soil Collembola in floodplains of the upper Rhine Valley. Pedobiologia 48:527–536. https://doi.org/10.1016/j.pedobi.2004.06.007

    Article  Google Scholar 

  • Seniczak A (2011) Oribatid mites (Acari, Oribatida) and their seasonal dynamics in a floating bog mat in Jeziorka Kozie reserve, Tuchola Forest (Poland). Biol Lett 48(1):3–11. https://doi.org/10.2478/v10120-011-0001-0

    Article  Google Scholar 

  • Seniczak A, Seniczak S, Maraun M, Graczyk R, Mistrzak M (2016) Oribatid mite species numbers increase, densities decline and parthenogenetic species suffer during bog degradation. Exp Appl Acarol 68:409–428. https://doi.org/10.1007/s10493-016-0015-8

    Article  PubMed  Google Scholar 

  • Seniczak A, Seniczak S, Graczyk R, Waldon-Rudzionek B, Nowicka A, Pacek S (2019) Seasonal dynamics of Oribatid mites (Acari, Oribatida) in a bog in Poland. Wetlands 39:1–12. https://doi.org/10.1007/s13157-019-01125-2

    Article  Google Scholar 

  • Siepel H (1995) Applications of microarthropod life-history tactics in nature management and ecotoxicology. Biol Fertil Soils 19:75–83. https://doi.org/10.1007/BF00336351

    Article  Google Scholar 

  • Sterzyńska M, Pižl V, Tajovský K, Stelmaszczyk M, Okruszko T (2015) Soil fauna of peat-forming wetlands in a natural river floodplain. Wetlands 35:815–829. https://doi.org/10.1007/s13157-015-0672-0

  • Thakur MP, Berg MP, Eisenhauer N, van Langevelde F (2014) Disturbance-diversity relationships for soil fauna are explained by faunal community biomass in a salt marsh. Soil Biol Biochem 78:30–37. https://doi.org/10.1016/j.soilbio.2014.06.021

    Article  CAS  Google Scholar 

  • Tronstad LM, Tronstad BP, Benke AC (2005) Invertebrate responses to decreasing water levels in a subtropical river floodplain wetland. Wetlands 25:583–593. https://doi.org/10.1672/0277-5212(2005)025[0583:IRTDWL]2.0.CO;2

    Article  Google Scholar 

  • Tsiafouli MA, Kallimanis AS, Katana E, Stamou GP, Sgardelis SP (2005) Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Appl Soil Ecol 29:17–26. https://doi.org/10.1016/j.apsoil.2004.10.002

    Article  Google Scholar 

  • Vilček J (2004) Geografia poľnohospodárskych pôd Východoslovenskej nížiny [Geography of the Eastern Slovak Lowland farmland]. Folia Geogr 7:220–246. [in Slovak]

  • Wallwork JA (1976) The distribution and diversity of soil fauna. Academic Press, London

  • Wehner K, Heethoff M, Brückner A (2018) Seasonal fluctuation of oribatid mite communities in forest microhabitats. PeerJ 6:e4863. https://doi.org/10.7717/peerj.4863

    Article  PubMed  PubMed Central  Google Scholar 

  • Weigmann G (2006) Acari, Actinochaetida: Hornmilben (Oribatida). Goecke & Evers, Keltern

    Google Scholar 

  • Werner MR, Dindal DL (1990) Effects of conversion to organic agricultural practices on soil biota. Am J Altern Agric 5:24–32. https://doi.org/10.1017/S0889189300003192

    Article  Google Scholar 

  • Wissuwa J, Salamon J-A, Frank T (2013) Oribatida (Acari) in grassy arable fallows are more affected by soil properties than habitat age and plant species. Eur J Soil Biol 59:8–14

    Article  Google Scholar 

  • Wood TG (1967) Acari and Collembola of moorland soils from Yorkshire, England. II. Vertical distribution in four grassland soils. Oikos 18:137–140

    Article  Google Scholar 

  • Żbikowska-Zdun K, Piksa K, Watrak I (2006) Diversity of mites (Acari: Oribatida) in selected microhabitats of the bug river protected landscape area. Biol Lett 43(2):277–286

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Ľubomír Kováč for his valuable comments on the manuscript, to Dr. Peter Kaňuch for his constructive comments on the results assessment and help with CCA analysis, and to Mr. David McLean for proofreading. The study was partially supported by the project “Environmental protection against parasitozoonoses under the influence of global climate and social changes” (code IMTS: 26220220116), supported by the Research and Development Operational Programme funded by the ERDF (0.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Jakšová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Presence of oribatid species at the study sites

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakšová, P., Ľuptáčik, P., Miklisová, D. et al. Oribatida (Acari) communities in arable soils formed under waterlogged conditions: the influence of a soil moisture gradient. Biologia 75, 243–257 (2020). https://doi.org/10.2478/s11756-019-00291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-019-00291-2

Keywords

Navigation