Skip to main content
Log in

Spatial distribution of four freshwater fish species in different types of artificial European water bodies

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Spatial distribution of young-of-the-year (YOY) and older roach, rudd, perch and ruffe was compared in two artificial lakes with macrophytes present and absent, and a valley reservoir, using gillnets. Almost all species of interest and both age categories preferred benthic habitats. The depth distribution in benthic habitats was relatively consistent across water bodies with the highest fish densities found in the shallowest depths. In the macrophyte-rich lake, YOY roach and perch utilize the 3–6 m benthic layer the most, whereas the fish preferred the 0–3 m benthic layer in the macrophyte-poor lake and reservoir. No differences were found in the depth distribution in pelagic habitats sampled by pelagic gillnets for YOY fish between the water bodies. Older fish usually utilized the surface water layer. Macrophytes influenced the depth distribution of YOY fish in benthic habitats, where their density maximum shifted deeper in the macrophyte-rich lake when fewer macrophytes were present in the shallowest benthic depth. In lakes, YOY fish utilized a wider depth spectrum due to the deeper thermocline when compared to the reservoir. Oxygen and temperature stratification are the main factors influencing fish distribution, whereas macrophyte presence particularly influences the depth distribution of YOY fish in benthic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdel-Tawwab M (2005) The effect of artificial vegetation density on growth and growth related parameters of Nile Tilapia, Oreochromis niloticus (L.) fry. Turk J Fish Aquat Sci 5:63–68

  • Agostinho AA, Thomaz SM, Gomes LC, Baltar SLSMA (2007) Influence of the macrophyte Eichhornia azurea on fish assemblages of the upper Paraná River floodplain (Brazil). Aquat Ecol 41:611–619. https://doi.org/10.1007/s10452-007-9122-2

    Article  CAS  Google Scholar 

  • Bohl E (1980) Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44:368–375. https://doi.org/10.1007/BF00545241

    Article  Google Scholar 

  • CEN (2005) European standard EN 14 757. Water Quality—Sampling of Fish with Multimesh Gillnets

  • Chapman LJ, Chapman CA, Chandler M (1996) Wetland ecotones as refugia for endangered fishes. Biol Conserv 78:263–270. https://doi.org/10.1016/S0006-3207(96)00030-4

    Article  Google Scholar 

  • Fischer P, Eckmann R (1997) Spatial distribution of littoral fish species in a large European Lake, lake Constance, Germany. Arch Hydrobiol 140:91–116. https://doi.org/10.1127/archiv-hydrobiol/140/1997/91

    Article  Google Scholar 

  • Gliwitz ZM, Slon J, Szynkarczyk I (2006) Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Freshw Biol 51:823–839. https://doi.org/10.1111/j.1365-2427.2006.01530.x

    Article  Google Scholar 

  • Guthrie DM, Muntz WRA (1993) Role of vision in fish behaviour. In: Pitcher TJ (ed), Behaviour of teleost fishes, 2nd edn. Chapman & Hall, pp 89-128

  • Hölker F, Thiel R (1998) Biology of ruffe (Gymnocephalus cernuus (L.)) – a review of selected aspects from European literature. J Great Lakes Res 24:186–204. https://doi.org/10.1016/S0380-1330(98)70812-3

    Article  Google Scholar 

  • Jackman S (2017) Pscl: classes and methods for R developed in the political science computational laboratory. United States studies Centre, University of Sydney. Sydney, new South Wales, Australia. R package version 1.5.2. URL https://github.com/atahk/pscl/

  • Järvalt A, Krause T, Palm A (2005) Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547:197–203. https://doi.org/10.1007/s10750-005-4160-z

    Article  Google Scholar 

  • Jůza T, Vašek M, Kubečka J, Seďa J, Matěna J, Prchalová M, Peterka J, Říha M, Jarolím O, Tušer M, Kratochvíl M, Čech M, Draštík V, Frouzová J, Hohausová E, Žaloudík J (2009) Pelagic underyearling communities in a canyon-shaped reservoir in late summer. J Limnol 68:304–314. https://doi.org/10.3274/JL09-68-2-13

    Article  Google Scholar 

  • Jůza T, Vašek M, Kratochvíl M, Blabolil P, Čech M, Draštík V, Frouzová J, Muška M, Peterka J, Prchalová M, Říha M, Tušer M, Kubečka J (2014) Chaos and stability of age 0-fish assemblages in a temperate deep reservoir: unpredictable success and stable habitat use. Hydrobiologia 724:217–234. https://doi.org/10.1007/s10750-013-1735-y

    Article  Google Scholar 

  • Kangur K, Kangur A (1996) Feeding of ruffe (Gymnocephalus cernuus) in relation to the abundance of benthic organisms in Lake Vârtsjärv (Estonia). Ann Zool Fenn 33:473–480

    Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. Kottelat, Cornol, Swizerland and Freyhof, Berlin

  • Lopes CTMER, Silva JCB, Behrend RDL, Gomes LC (2015) Dense macrophytes influence the horizontal distribution of fish in floodplain lakes. Environ Biol Fish 98:1741–1755. https://doi.org/10.1007/s10641-015-0394-4

    Article  Google Scholar 

  • Miranda LE, Hodges KB (2000) Role of aquatic vegetation coverage on hypoxia and sunfish abundance in bays of a eutrophic reservoir. Hydrobiologia 427:51–57. https://doi.org/10.1023/A:1003999929094

    Article  Google Scholar 

  • Muška M, Tušer M, Frouzová J, Draštík V, Čech M, Jůza T, Kratochvíl M, Mrkvička T, Peterka J, Prchalová M, Říha T, Vašek M, Kubečka J (2013) To migrate or not to migrate: partial diel horizontal migration of fish in a temperate reservoir. Hydrobiologia 707:17–28. https://doi.org/10.1007/s10750-012-1401-9

    Article  Google Scholar 

  • Muška M, Vašek M, Modrý D, Jirků M, Ojwang WO, Malada JO, Kubečka J (2012) The last snapshot of natural pelagic fish assemblage in Lake Turkana, Kenya: a hydroacoustic study. J Great Lakes Res 38:98–106. https://doi.org/10.1016/j.jglr.2011.11.014

    Article  Google Scholar 

  • Persson L (1986) Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence of poikilotherms. J Anim Ecol 55:829–839. https://doi.org/10.2307/4419

    Article  Google Scholar 

  • Prchalová M, Kubečka J, Čech M, Frouzová J, Draštík V, Hohausová E, Jůza T, Kratochvíl M, Matěna J, Peterka J, Říha M, Tušer M, Vašek M (2009) The effect of depth, distance from dam and habitat on spatial distribution of fish in an artificial reservoir. Ecol Freshw Fish 18:247–260. https://doi.org/10.1111/j.1600-0633.2008.00342.x

    Article  Google Scholar 

  • Prchalová M, Kubečka J, Vašek M, Peterka J, Seďa J, Jůza T, Říha M, Jarolím O, Tušer M, Kratochvíl M, Čech M, Draštík V, Frouzová J, Hohausová E (2008) Distribution patterns of fishes in a canyon-shaped reservoir. J Fish Biol 73:54–78. https://doi.org/10.1111/j.1095-8649.2008.01906.x

    Article  Google Scholar 

  • Prchalová M, Mrkvička T, Kubečka J, Peterka J, Čech M, Muška M, Kratochvíl M, Vašek M (2010) Fish activity as determined by gillnet catch: a comparison of two reservoirs of different turbidity. Fish Res 102:291–296. https://doi.org/10.1016/j.fishres.2009.12.011

    Article  Google Scholar 

  • R Core Team. (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Randall RG, Minns CK, Cairns VW, Moore JE (1996) The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Can J Fish Aquat Sci 53:35–44. https://doi.org/10.1139/f95-271

    Article  Google Scholar 

  • Říha M, Kubečka J, Prchalová M, Mrkvička T, Čech M, Draštík V, Frouzová J, Hohausová E, Jůza T, Kratochvíl M, Peterka J, Tušer M, Vašek M (2011) The influence of diel period on fish assemblage in the unstructured littoral of reservoirs. Fisheries Manag Ecol 18:339–347. https://doi.org/10.1111/j.1365-2400.2011.00790.x

    Article  Google Scholar 

  • Sánches-Botero JI, Araujo-Lima CAMR, Garcez DS (2008) Effects of types of aquatic macrophyte stands and variations of dissolved oxygen and of temperature on the distribution of fishes in lakes of the amazonian floodplain. Acta Limnol Bras 20:45–54

    Google Scholar 

  • Savino JF, Stein RA (1982) Predator-prey interaction between largemouth bass and bluegills as introduced by simulated, submerged vegetation. T Am Fish Soc 111:255–266. https://doi.org/10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2

    Article  Google Scholar 

  • Sogard SM (1997) Size-selective mortality in the juvenile stage of teleost fishes: a review. B Mar Sci 60:1129–1157

    Google Scholar 

  • Van Dijk PLM, Staaks G, Hardewig I (2002) The effect of fasting and refeeding on temperature preference, activity and growth of roach, Rutilus rutilus. Oekologia 130:496–504. https://doi.org/10.1007/s00442-001-0830-3

    Article  Google Scholar 

  • Vejříková I, Vejřík L, Syväranta J, Kiljunen M, Čech M, Blabolil P, Vašek M, Sajdlová Z, Chung SHT, Šmejkal M, Frouzová J, Peterka J (2016) Distribution of herbivorous fish is frozen by low temperature. Sci Rep - UK 6:39600. https://doi.org/10.1038/srep39600

    Article  CAS  Google Scholar 

  • Winfield IJ (1986) The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, Rudd, Scardinius erythropthalmus, and perch, Perca fluviatilis. J Fish Biol 29:37–48. https://doi.org/10.1111/j.1095-8649.1986.tb04997.x

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science + Business Media

Download references

Acknowledgments

We would like to thank Fish Ecology Unit (FishEcU, www.fishecu.cz) for data collection assistance and Leslie Tse for correcting the English of the manuscript. The study was supported by the Norwegian Financial Mechanism 2009-2014 under contract number MSMT-28477/2014 (project number 7F14316), the COST-CZ program under contract number MSMT-LD15021 and by the SoWa Research Infrastructure funded by MEYS CZ grant LM2015075, programme “Projects of Large Infrastructure for Research, Development, and Innovations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Jůza.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exist.

Ethics statement

Fish sampling and treatment was conducted in compliance with guidelines from the Experimental Animal Welfare Commission under the Ministry of Agriculture of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jůza, T., Blabolil, P., Čech, M. et al. Spatial distribution of four freshwater fish species in different types of artificial European water bodies. Biologia 73, 647–658 (2018). https://doi.org/10.2478/s11756-018-0075-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-018-0075-9

Keywords

Navigation