Skip to main content
Log in

Microbial community shift with decabromodiphenyl ether (BDE 209) in sediments of the Pearl River estuary, China

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

To compare the effect of decabromodiphenyl ether (BDE 209) on microbial community from the Pearl River estuary, the microbial community at three in situ sites and the responses of microbial community to BDE-209 stressor were investigated. Denaturing gradient gel electrophoresis analysis of 16S rRNA gene showed that microbial community at site A2 has less diversity than sites A1 and A3. Physicochemical parameters (NH4-N, salinity and SiO3-Si) could significantly impact the microbial community composition in this estuary. In laboratory-incubated experiments, results indicated high concentration of BDE 209 (100 mg/kg) could increase the microbial diversity at sites A1 and A2, whereas reduced the microbial diversity at site A3. The unweighted pair group method with arithmetic means cluster analysis and principal component analysis demonstrated that the community structure changes at sites A1 and A2 were driven by the BDE 209 concentration, whereas at site A3 they depended on the incubation time. Thirty-five days after the addition of 100 mg/kg BDE 209, Firmicutes were found to be the dominant bacteria at sites A1 and A2. These data suggest the BDE 209 may have different effects on the microbial community in the Pearl River estuary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDE 209:

decabromodiphenyl ether

CCA:

canonical correspondence analysis

DCA:

detrended correspondence analysis

DGGE:

denaturing gradient gel electrophoresis

log Kow :

octanol-water partition coefficient

MSM:

mineral salt medium

PAHs:

polycyclic aromatic hydrocarbons

PBDEs:

polybrominated diphenyl ethers

PCA:

principal component analysis

PRD:

the Pearl River Delta

UPGMA:

unweighted pair group method with arithmetic means

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Amann R.I., Ludwig W. & Schleifer K.H. 1995. Phylogenetic identification and in situ detection of individual microbialcells without cultication. Microbiol. Res. 59: 143–169.

    CAS  Google Scholar 

  • An T., Chen J., Li G., Ding X., Sheng G., Fu J., Mai B. & O’Shea K.E. 2008. Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts degradation of decabromodiphenyl ether (BDE 209). Catal. Today 139: 69–76.

    Article  CAS  Google Scholar 

  • Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Res. 41(Database issue): D36–D42.

    Article  PubMed  CAS  Google Scholar 

  • Cao H., Hong Y., Li M. & Gu J.D. 2012. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94: 247–259.

    Article  PubMed  CAS  Google Scholar 

  • Castle D.M., Montgomery M.T. & Kirchman D.L. 2006. Effects of naphthalene on microbial community composition in the Delaware estuary. FEMS Microbiol. Ecol. 56: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • de Wit C. 2002. An overview of brominated flame retardants in the environment. Chemosphere 46: 583–624.

    Article  PubMed  Google Scholar 

  • Deng D., Guo J., Sun G., Chen X., Qiu M. & Xu M 2011. Aerobic debromination of deca-BDE: isolation and characterization of an indigenous isolate from a PBDE contaminated sediment. Int. Biodeterior. Biodegradation 65: 465–469.

    Article  CAS  Google Scholar 

  • Flocco C.G., Gomes N.C.M., Mac Cormack W. & Smalla K. 2009. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ. Microbiol. 11: 700–714.

    Article  PubMed  CAS  Google Scholar 

  • Gerecke A.C., Hartmann P.C., Heeb N.V., Kohler H.P.E., Giger W., Schmid P., Zennegg M. & Kohler M. 2005. Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol. 39: 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Guan Y.F., Sojinu O.S.S., Li S.M & Zeng E.Y. 2009. Fate of polybrominated diphenyl ethers in the environment of the Pearl River estuary, South China. Environ. Pollut. 157: 2166–2172.

    Article  PubMed  CAS  Google Scholar 

  • He J., Robrock K.R. & Alvarez-Cohen L. 2006. Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ. Sci. Technol. 40: 4429–4434.

    Article  PubMed  CAS  Google Scholar 

  • Hill T.C.J., Walsh K.A., Harris J.A. & Moffett B.F. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Hong Y.G., Yin B. & Zheng T.L. 2011. Diversity and abundance of anammox bacterial community in the deep-ocean surface sediment from equatorial Pacific. Appl. Microbiol. Biotechnol. 89: 1233–1241.

    Article  PubMed  CAS  Google Scholar 

  • Horner-Devine M.C., Lage M., Hughes J.B. & Bohannan B.J.M. 2004. A taxa-area relationship for bacteria. Nature 432: 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Huang H.W., Chang B.V. & Cheng C.H. 2012. Biodegradation of dibromodiphenyl ether in river sediment. Int. Biodeterior. Biodegradation 68: 1–6.

    Article  Google Scholar 

  • Iwamoto T., Tani K., Nakamura K., Suzuki Y., Kitagawa M., Eguchi M. & Nasu M. 2000. Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol. Ecol. 32: 129–141.

    Article  PubMed  CAS  Google Scholar 

  • Liu G., Yu L., Li J., Liu X. & Zhang G. 2011a. PAHs in soils and estimated air soil exchange in the Pearl River Delta, South China. Environ. Monit. Assess 173: 861–870.

    Article  PubMed  CAS  Google Scholar 

  • Liu L., Zhu W., Xiao L. & Yang L. 2011b. Effect of decabromodiphenyl ether (BDE 209) and dibromodiphenyl ether (BDE 15) on soil microbial activity and bacterial community composition. J. Hazard. Mater. 186: 883–890.

    Article  PubMed  CAS  Google Scholar 

  • Mai B.X., Fu J.M., Zhang G., Lin Z., Min Y.S., Sheng G.Y. & Wang X.M. 2001. Polycyclic aromatic hydrocarbons in sediments from the Pearl river and estuary, China: spatial and temporal distribution and sources. Appl. Geochem. 16: 1429–1445.

    Article  Google Scholar 

  • Mai B.X., Chen S.J., Luo X.J., Chen L.G., Yang Q.S., Sheng G.Y., Peng P.G., Fu J.M. & Zeng E.Y. 2005. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environ. Sci. Technol. 39: 3521–3527.

    Article  PubMed  CAS  Google Scholar 

  • Moon H.B., Kannan K., Lee S.J. & Choi M. 2007. Polybrominated diphenyl ethers (PBDEs) in sediment and bivalves from Korean coastal waters. Chemosphere 66: 243–251.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G. & Ramsing N.B. 1995. Molecular methods to study the organization of microbial communities. Water Sci. Technol. 32: 1–9.

    CAS  Google Scholar 

  • Peng J.J., Cai C., Qiao M., Li H. & Zhu Y.G. 2010. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. Environ. Pollut. 158: 2872–2879.

    Article  PubMed  CAS  Google Scholar 

  • Robrock K.R., Coelhan M., Sedlak D.L. & Alvarez-Cohen L. 2009. Aerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates. Environ. Sci. Technol. 43: 5705–5711.

    Article  PubMed  CAS  Google Scholar 

  • Robrock K.R., Korytar P. & Alvarez-Cohen L. 2008. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environ. Sci. Technol. 42: 2845–2852.

    Article  PubMed  CAS  Google Scholar 

  • Sun F.L., Wang Y.S., Wu M.L., Wang Y.T. & Li Q.P. 2011. Spatial heterogeneity of bacterial community structure in the sediments of the Pearl River estuary. Biologia 66: 574–584.

    Article  Google Scholar 

  • Suzuki M.T. & Giovannoni S.J. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62: 625–630.

    PubMed  CAS  Google Scholar 

  • Tabor S. & Richardson C.C. 1987. DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA 84: 4767–4771.

    Article  PubMed  CAS  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • ter Braak C.J.F. & Smilauer P. 2002. CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (Version 4.5). Microcomputer Power. Ithaca, NY, USA.

    Google Scholar 

  • Wang Y.S., Huang Y.J., Chen W.C. & Yen J.H. 2009. Effect of carbendazim and pencycuron on soil bacterial community. J. Hazard. Mater. 172: 84–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y.S., Lou Z.P., Sun C.C. & Sun S. 2008. Ecological environment changes in Daya Bay, China, from 1982 to 2004. Mar. Pollut. Bull. 56: 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  • Wu Y., He T., Zhong M., Zhang Y., Li E., Huang T. & Hu Z. 2009. Isolation of marine benzo[a]pyrene-degrading Ochrobactrum sp. BAP5 and proteins characterization. J. Environ. Sci. 21: 1446–1451.

    Article  CAS  Google Scholar 

  • Yao Y., Guan J., Tang P., Jiao H., Lin C., Wang J., Lu Z., Min H. & Gao H. 2010. Assessment of toxicity of tetrahydrofuran on the microbial community in activated sludge. Bioresour. Technol. 101: 5213–5221.

    Article  PubMed  CAS  Google Scholar 

  • Yogui G.T. & Sericano J.L. 2009. Polybrominated diphenyl ether flame retardants in the U.S. marine environment: a review. Environ. Int. 35: 655–666.

    Article  CAS  Google Scholar 

  • Zhang Y., Dong J., Yang Z., Zhang S. & Wang Y. 2008. Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR-denaturing gradient gel electrophoresis. Arch. Microbiol. 190: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Zhou H.W., Wong A.H.Y., Yu R.M.K., Park Y.D., Wong Y.S. & Tam N.F.Y. 2008. Polycyclic aromatic hydrocarbon-induced structural shift of bacterial communities in mangrove sediment. Microbiol. Ecol. 58: 153–160.

    Article  Google Scholar 

  • Zhu W., Liu L., Zou P., Xiao L. & Yang L. 2010. Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition. World J. Microbiol. Biotechnol. 26: 1891–1899.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Shao Wang.

Additional information

Electronic supplementary material. The online version of this article (DOI: 10.2478/s11756-013-0227-x) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P., Wang, YS., Sun, CC. et al. Microbial community shift with decabromodiphenyl ether (BDE 209) in sediments of the Pearl River estuary, China. Biologia 68, 788–796 (2013). https://doi.org/10.2478/s11756-013-0227-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0227-x

Key words

Navigation