Skip to main content
Log in

Sucrose phosphorylases catalyze transglycosylation reactions on carboxylic acid compounds

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Two sucrose phosphorylases were employed for glycosylation of carboxylic acid compounds. Streptococcus mutans sucrose phosphorylase showed remarkable transglycosylating activity, especially under acidic conditions. Leuconostoc mesenteroides sucrose phosphorylase exhibited very weak transglycosylating activity. Three main products were detected from the reaction mixture using benzoic acid and sucrose as an acceptor and a donor molecule, respectively. These compounds were identified as 1-O-benzoyl α-d-glucopyranoside, 2-O-benzoyl α-d-glucopyranose, and 2-O-benzoyl β-d-glucopyranose by 1D-and 2D-NMR analyses of the isolated products and their acetylated products. Time-course analyses proved that 1-O-benzoyl α-d-glucopyranoside was initially produced by the transglycosylation reaction of the enzyme. 2-O-Benzoyl α-d-glucopyranose and 2-O-benzoyl β-d-glucopyranose were produced from 1-O-benzoyl α-d-glucopyranoside by intramolecular acyl migration reaction. S. mutans sucrose phosphorylase showed broad acceptor-specificity. This sucrose phosphorylase catalyzed transglycosylation to various carboxylic compounds such as short-chain fatty acids, hydroxy acids, dicarboxylic acids, and phenolic carboxylic acids. 1-O-Acetyl α-d-glucopyranoside was also enzymatically synthesized by transglucosylation reaction of the enzyme. The sensory test of acetic acid and the glucosides revealed that the sour taste of acetic acid glucosides was significantly lower than that of acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Clarke D.J. & Burchell B. 1994. The uridine diphosphate glucuronosyltransferase multigene family: function and regulation, pp. 3–43. In: Kauffman F.C. (ed.) Handbook of Experimental Pharmacology, Vol. 112, Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, Budapest.

    Google Scholar 

  • Doudoroff M. 1943. Studies on the phosphorolysis of sucrose. J. Biol. Chem. 151: 351–361.

    CAS  Google Scholar 

  • Fenselau C. 1994. Acyl glucuronides as chemically reactive intermediates, pp. 367–389. In: Kauffman F.C. (ed.) Handbook of Experimental Pharmacology, Vol. 112, Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, Budapest.

    Google Scholar 

  • Fujii K., Iiboshi M., Yanase M., Takaha T. & Kuriki T. 2006. Enhancing the thermal stability of sucrose phosphorylase from Streptococcus mutans by random mutagenesis. J. Appl. Glycosci. 53: 91–97.

    CAS  Google Scholar 

  • Funayama M., Arakawa H., Yamamoto R., Nishino T., Shin T. & Murao S. 1995. Effects of α-and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotechnol. Biochem. 59: 143–144.

    PubMed  CAS  Google Scholar 

  • Kishi M., Fukaya M., Tsukamoto Y., Nagasawa T., Takehana K. & Nishizawa N. 1999. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Biosci. Biotechnol. Biochem. 63: 905–910.

    Article  PubMed  CAS  Google Scholar 

  • Kitao S. & Sekine H. 1994. α-d-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci. Biotechnol. Biochem. 58: 38–42.

    CAS  Google Scholar 

  • Kitaoka K., Takahashi H., Hara K., Hashimoto H., Sasaki T. & Taniguchi H. 1994. Purification and characterization of sucrose phosphorylase from Leuconostoc mesenteroides ATCC 12291 cells, and disaccharides synthesis by the enzyme. Oyo Toshitsu Kagaku 41: 165–172.

    CAS  Google Scholar 

  • Kometani T., Terada Y., Nishimura T., Hiroshi T. & Okada S. 1994. Transglycosylation to hesperidin by cyclodextrin glucanotransferase from an alkalophilic Bacillus species in alkaline pH and properties of hesperidin glycosides. Biosci. Biotechnol. Biochem. 58: 1990–1994.

    Article  CAS  Google Scholar 

  • Kondo S., Tayama K., Tsukamoto Y., Ikeda K. & Yamori Y. 2001. Antihypertensive effects of acetic acid and vinegar on spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 65: 2690–2694.

    Article  PubMed  CAS  Google Scholar 

  • Mieyal J.J. & Abeles R.H. 1972. Disaccharide Phosphorylases, pp. 515–532. In: Boyer P.D. (ed.), The Enzymes, Vol. 7, 3rd Ed., Academic Press, New York.

    Google Scholar 

  • Mirza O., Skov L.K., Sprogøe D., van den Broek L.A., Beldman G., Kastrup J.S. & Gajhede M. 2006. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. J. Biol. Chem. 281: 35576–35584.

    Article  PubMed  CAS  Google Scholar 

  • Nakano H., Kiso T., Okamoto K., Tomita T., Manan M.B. & Kitahata S. 2003. Synthesis of glycosyl glycerol by cyclodextrin glucanotransferases. J. Biosci. Bioeng. 95: 583–588.

    PubMed  CAS  Google Scholar 

  • Nishimura T., Kometani T., Takii H., Terada Y. & Okada S. 1994. Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. J. Ferment. Bioeng. 78: 31–36.

    Article  CAS  Google Scholar 

  • Nomura K., Sugimoto K., Nishiura H., Ohdan K., Nishimura T., Hayashi H. & Kuriki T. 2008. Glucosylation of acetic acid by sucrose phosphorylase. Biosci. Biotechnol. Biochem. 72: 82–87.

    Article  PubMed  CAS  Google Scholar 

  • Spahn-Langguth H. & Benet L.Z. 1992. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism? Drug Metab. Rev. 24: 5–48.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K., Nishimura T., Nomura K., Sugimoto K. & Kuriki T. 2003. Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase. Chem. Pharm. Bull. 51: 798–801.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K., Nomura K., Nishimura T., Kiso T., Sugimoto K. & Kuriki T. 2005. Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human tyrosinase. J. Biosci. Bioeng. 99: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto K., Nomura K., Nishiura H., Ohdan K., Nishimura T., Hayashi H. & Kuriki T. 2007. Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid. J. Biosci. Bioeng. 104: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Takenaka F. & Uchiyama H. 2000. Synthesis of α-d-glucosylglycerol by α-glucosidase and some of its characteristics. Biosci. Biotechnol. Biochem. 64: 1821–1826.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhisa Sugimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, K., Nomura, K., Nishiura, H. et al. Sucrose phosphorylases catalyze transglycosylation reactions on carboxylic acid compounds. Biologia 63, 1015–1019 (2008). https://doi.org/10.2478/s11756-008-0161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0161-5

Key words

Navigation