Skip to main content
Log in

Artificial neural networks for fly identification: A case study from the genera Tachina and Ectophasia (Diptera, Tachinidae)

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The classification methodology based on morphometric data and supervised artificial neural networks (ANN) was tested on five fly species of the parasitoid genera Tachina and Ectophasia (Diptera, Tachinidae). Objects were initially photographed, then digitalized; consequently the picture was scaled and measured by means of an image analyser. The 16 variables used for classification included length of different wing veins or their parts and width of antennal segments. The sex was found to have some influence on the data and was included in the study as another input variable. Better and reliable classification was obtained when data from both the right and left wings were entered, the data from one wing were however found to be sufficient. The prediction success (correct identification of unknown test samples) varied from 88 to 100% throughout the study depending especially on the number of specimens in the training set. Classification of the studied Diptera species using ANN is possible assuming a sufficiently high number (tens) of specimens of each species is available for the ANN training. The methodology proposed is quite general and can be applied for all biological objects where it is possible to define adequate diagnostic characters and create the appropriate database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop C. 1995. Neural Networks for Pattern Recognition. Oxford University Press, 504 pp.

  • Carling A. 1992. Introducing Neural Networks. Sigma Press, Wilmslow, UK, 338 pp.

    Google Scholar 

  • Clark J.Y. 2003. Artificial neural networks for species identification by taxonomists. BioSystems 72: 131–147.

    Article  PubMed  Google Scholar 

  • Chesmore D. 2004. Automated bioacoustic identification of species. An. Acad. Bras. Cienc. 76: 435–440.

    Google Scholar 

  • Do M.T., Harp J.M. & Norris K.C. 1999. A test of a pattern recognition system for identification of spiders. Bull. Entomol. Res. 89: 217–224.

    Google Scholar 

  • Fausett L. 1994. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice Hall, New York, 461 pp.

    Google Scholar 

  • Gaston K.J. & O’Neill M.A. 2004. Automated species identification: why not? Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 655–667.

    Article  PubMed  Google Scholar 

  • Hennig W. 1954. Flügelgeäder und System der Dipteren unter Berücksichtigung der aus dem Mesosoikum beschriebenen Fossilien. Beitr. Entomol. 4: 245–388.

    Google Scholar 

  • Hernández-Borges J., Corbella-Tena R., Rodriguez-Delgado M.A., Garcia-Montelongo F.J. & Havel J. 2004. Content of aliphatic hydrocarbons in limpets as a new way for classification of species using Artificial Neural Networks. Chemosphere 54: 1059–1069.

    Article  PubMed  CAS  Google Scholar 

  • Houle D., Mezey J., Galpern P. & Carter A. 2003. Automated measurement of Drosophila wings. BMC Evolutionary Biology 3: 25. doi:10.1186/1471-2148-3-25. http://www.biomedcentral.com/1471-2148/3/25 (accessed 12.10.2006).

    Article  PubMed  Google Scholar 

  • Kukalová-Peck J. 1991. Fossil history and the evolution of hexapod structures, pp. 141–179. In: Naumann I.D. (ed.), The Insects of Australia, Vol. 1, Melbourne Univ. Press.

  • McAlpine J.F. 1989. Phylogeny and classification of the Muscomorpha, pp. 1397–1505. In: McAlpine J.F. (ed.), Manual of Nearctic Diptera, Vol. 3, Monograph No. 32, Research Branch, Agriculture Canada, Ottawa.

    Google Scholar 

  • Marcondes C.B. & Borges P.S. 2000. Distinction of males of the Lutzomyia intermedia (Lutz & Neiva, 1912) species complex by ratios between dimensions and by an Artificial Neural Network (Diptera: Psychodidae, Phlebotominae). Mem. Inst. Oswaldo Cruz 95: 685–688.

    Article  PubMed  CAS  Google Scholar 

  • Patterson D. 1996. Artificial Neural Networks: Theory and Applications. Prentice Hall, Singapore.

    Google Scholar 

  • Tofilski A. 2004. DrawWing, a program for numerical description of insect wings. J. Insect Sci. 4: 17. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=528877&blobtype=pdf (accessed 12.10.2006).

    PubMed  Google Scholar 

  • Tóthová A., Bryja J., Bejdák P. & Vaňhara J. 2006. Molecular markers used in phylogenetic studies of Diptera with a methodological overview. Dipterologica Bohemoslovaca, Vol. 13, Acta Univ. Carol. Biol. 50: 125–133.

    Google Scholar 

  • Tschorsnig H.-P. & Herting B. 1994. Die Raupenfliegen (Diptera: Tachinidae) Mitteleuropas: Bestimmungstabelles und Angaben zur Verbreitung und Ökologie der einzelnen Arten. Stuttgarter Beiträge zur Naturkunde, Serie A, No. 506, pp. 1–170. Online authorized version of English translation by Rayner R. & Raper C. “Tschorsnig H.-P. & Herting B. 2001. The Tachinids (Diptera: Tachinidae) of Central Europe: Identification keys for the species and data on distribution and ecology“. http://tachinidae.org.uk/site/downloads.php (accessed 12.10.2006).

  • Tschorsnig H.-P. & Richter V. 1998. Tachinidae, pp. 691–827. In: Papp L. & Darvas B. (eds), Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance), Vol. 3., Higher Brachycera, Science Herald, Budapest.

    Google Scholar 

  • Tschorsnig H.-P., Richter V.A., Cerretti P., Zeegers T., Bergström C., Vaňhara J., Van de Weyer G., Bystrowski C., Raper C., Ziegler J. & Hubenov, Z. 2005. Tachinidae. In: Fauna Europaea Service, Version 1.2. http://www.faunaeur.org (accessed 12.10.2006).

  • Vaňhara J., Tschorsnig H.-P. & Barták M. 2004. New records of Tachinidae (Diptera) from the Czech Republic and Slovakia, with revised check-list. Stud. Dipterol. 10 (2003): 679–701.

    Google Scholar 

  • Weeks P.J.D. & Gaston K.J. 1997. Image analysis, neural networks, and the taxonomic impediment to biodiversity studies. Biodivers. Conserv. 6: 263–274.

    Article  Google Scholar 

  • Weeks P.J.D., Gauld I.D., Gaston K.J. & O’Neill M.A. 1997. Automating the identification of insects: a new solution to an old problem. Bull. Entomol. Res. 87: 203–211.

    Article  Google Scholar 

  • Zupan J. & Gasteiger J. 1999. Neural Networks in Chemistry and Drug Design. Wiley-VCH, Weinheim, 380 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaromír Vaňhara Diptera or Josef Havel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaňhara, J., Muráriková, N., Malenovský, I. et al. Artificial neural networks for fly identification: A case study from the genera Tachina and Ectophasia (Diptera, Tachinidae). Biologia 62, 462–469 (2007). https://doi.org/10.2478/s11756-007-0089-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0089-1

Key words

Navigation