Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 4, 2008

Polyaniline-coated cellulose fibers decorated with silver nanoparticles

  • Jaroslav Stejskal EMAIL logo , Miroslava Trchová , Jana Kovářová , Jan Prokeš and Mária Omastová
From the journal Chemical Papers

Abstract

Cellulose fibers of 20 μm in diameter and aspect ratio of 2 or 10 were coated with protonated polyaniline (PANI) during the oxidation of aniline hydrochloride with ammonium peroxydisulfate in an aqueous medium. The presence of PANI has been proved by FTIR spectroscopy. The conductivity increased from 4.0 × 10−14 S cm−1 to 0.41 S cm−1 after coating the fibers with PANI. The percolation threshold in the mixture of original uncoated and PANI-coated fibers was reduced from 10 mass % PANI to 6 mass % PANI, as the aspect ratio changed from 2 to 10. The subsequent reaction with silver nitrate results in the decoration of PANI-coated cellulose fibers with silver nanoparticles of about 50 nm average size. The content of silver of up to 10.6 mass % was determined as a residue in thermogravimetric analysis. FTIR spectra suggest that the protonated emeraldine coating changed to the pernigraniline form during the latter process and, consequently, the conductivity of the composite was reduced to 4.1 × 10−4 S cm−1, despite the presence of silver.

[1] Beneventi, D., Alila, S., Boufi, S., Chaussy, D., & Nortier, P. (2006). Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation-pyrrole polymerization sequence. Cellulose, 13, 725–734. DOI: 10.1007/s10570-006-9077-9. http://dx.doi.org/10.1007/s10570-006-9077-910.1007/s10570-006-9077-9Search in Google Scholar

[2] Bhat, N. V., Seshadri, D. T., Nate, M. M., & Gore, A. V. (2006). Development of conductive cotton fabrics for heating devices. Journal of Applied Polymer Science, 102, 4690–4695. DOI: 10.1002/app.24708. http://dx.doi.org/10.1002/app.2470810.1002/app.24708Search in Google Scholar

[3] Cao, Y. (1990). Spectroscopic studies of acceptor and donor doping of polyaniline in the emeraldine base and pernigraniline forms. Synthetic Metals, 35, 319–332. DOI: 10.1016/0379-6779(90)90216-8. http://dx.doi.org/10.1016/0379-6779(90)90216-810.1016/0379-6779(90)90216-8Search in Google Scholar

[4] Chandrakanthi, N., & Careem, M. A. (2000). Preparation and characterization of fully oxidized form of polyaniline. Polymer Bulletin, 45, 113–120. DOI: 10.1007/s002890070038. http://dx.doi.org/10.1007/s00289007003810.1007/s002890070038Search in Google Scholar

[5] de Barros, R. A., Martins, C. R., & de Azevedo, W. M. (2005). Writing with conducting polymer. Synthetic Metals, 155, 35–38. DOI: 10.1016/j.synthmet.2005.05.014. http://dx.doi.org/10.1016/j.synthmet.2005.05.01410.1016/j.synthmet.2005.05.014Search in Google Scholar

[6] Deshpande, S. D., Kim, J., & Yun, S. R. (2005). Studies on conducting polymer electroactive paper actuators: effect of humidity and electrode thickness. Smart Materials and Structures, 14, 876–880. DOI: 10.1088/0964-1726/14/4/048. http://dx.doi.org/10.1088/0964-1726/14/4/04810.1088/0964-1726/14/4/048Search in Google Scholar

[7] Dikobe, D. G., & Lyut, A. S. (2007). Effect of filler content and size on the properties of ethylene vinyl acetate copolymer-wood fiber composites. Journal of Applied Polymer Science, 103, 3645–3654. DOI: 10.1002/app.25513. http://dx.doi.org/10.1002/app.2551310.1002/app.25513Search in Google Scholar

[8] Dimeska, R., Murray, P. S., Ralph, S. F., & Wallace, G. G. (2006). Electroless recovery of silver by inherently conducting polymer powders, membranes and composite materials. Polymer, 47, 4520–4530. DOI: 10.1016/j.polymer.2006.03.112. http://dx.doi.org/10.1016/j.polymer.2006.03.11210.1016/j.polymer.2006.03.112Search in Google Scholar

[9] Drelinkiewicz, A., Stejskal, J., Waksmundzka, A., & Sobczak, J. W. (2004). Physicochemical and catalytic properties of palladium deposited on polyaniline-coated silica gel. Synthetic Metals, 140, 233–246. DOI: 10.1016/S0379-6779(03)00368-0. http://dx.doi.org/10.1016/S0379-6779(03)00368-010.1016/S0379-6779(03)00368-0Search in Google Scholar

[10] Dutta, D., Sarma, T. K., Chowdhury, D., & Chattopadhyay, A. (2005). A polyaniline-containing filter paper that acts as a sensor, acid, base, and endpoint indicator and also filters acids and bases. Journal of Colloid and Interface Science, 283, 153–159. DOI: 10.1016/j.jcis.2004.08.051. http://dx.doi.org/10.1016/j.jcis.2004.08.05110.1016/j.jcis.2004.08.051Search in Google Scholar PubMed

[11] Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R. W., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W. S., & MacDi-armid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303–309. DOI: 10.1016/0379-6779(87)90896-4. http://dx.doi.org/10.1016/0379-6779(87)90896-410.1016/0379-6779(87)90896-4Search in Google Scholar

[12] Flandin, L., Cavaille, J. Y., Bidan, G., & Brechet, Y. (2000). New nanocomposite materials made of an insulating matrix and conducting fillers: Processing and properties. Polymer Composites 21, 165–174. DOI: 10.1002/pc.10174. http://dx.doi.org/10.1002/pc.1017410.1002/pc.10174Search in Google Scholar

[13] Hosseini, S. H., & Pairovi, A. (2005). Preparation of conducting fibres from cellulose and silk by polypyrrole coating. Iranian Polymer Journal, 14, 934–940. Search in Google Scholar

[14] Johnston, J. H., Kelly, F. M., Moraes, J., Borrmann, T., & Flynn, D. (2006). Conducting polymer composites with cellulose and protein fibres. Current Applied Physics, 6, 587–590. DOI: 10.1016/j.cap.2005.11.067. http://dx.doi.org/10.1016/j.cap.2005.11.06710.1016/j.cap.2005.11.067Search in Google Scholar

[15] Kazantseva, N. E., Vilčáková, J., Køesálek, V., Sáha, P., Sa-purina, I., & Stejskal, J. (2004). Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite. Journal of Magnetism and Magnetic Materials, 269, 30–37. DOI: 10.1016/S0304-8853(03)00557-2. http://dx.doi.org/10.1016/S0304-8853(03)00557-210.1016/S0304-8853(03)00557-2Search in Google Scholar

[16] Kim, J., Deshpande, S. D., Yun, S., & Li, Q. (2006). A comparative study of conductive polypyrrole and polyaniline coatings on electro-active papers. Polymer Journal, 38, 659–668. DOI: 10.1295/polymj.PJ2005185. http://dx.doi.org/10.1295/polymj.PJ200518510.1295/polymj.PJ2005185Search in Google Scholar

[17] Lee, H. S., & Hong, J. (2000). Chemical synthesis and characterization of polypyrrole coated on porous membranes and its electrochemical stability. Synthetic Metals, 113, 115–119. DOI: 10.1016/S0379-6779(00)00193-4. http://dx.doi.org/10.1016/S0379-6779(00)00193-410.1016/S0379-6779(00)00193-4Search in Google Scholar

[18] Li, W. G., Jia, Q. X., & Wang, H.-L. (2006). Facile synthesis of metal nanoparticles using conducting polymer colloids. Polymer, 47, 23–26. DOI: 10.1016/j.polymer.2005.11.032. http://dx.doi.org/10.1016/j.polymer.2005.11.03210.1016/j.polymer.2005.11.032Search in Google Scholar

[19] Mallick, K., Witcomb, M. J., & Scurell, M. S. (2006). Gold in polyaniline: Recent trends. Gold Bulletin, 39, 166–174. 10.1007/BF03215550Search in Google Scholar

[20] Malunka, M. E., Luyt, A. S., & Krump, H. (2006). Preparation and characterization of EVA-sisal fiber composites. Journal of Applied Polymer Science, 100, 1607–1617. DOI: 10.102/app.23650. http://dx.doi.org/10.1002/app.2365010.1002/app.23650Search in Google Scholar

[21] Mičušík, M., Omastová, M., Prokeš, J., & Krupa, I. (2006). Mechanical and electrical properties of composites based on thermoplastic matrices and conductive cellulose fibers. Journal of Applied Polymer Science, 101, 133–142. DOI: 10.1002/app.23041. http://dx.doi.org/10.1002/app.2304110.1002/app.23041Search in Google Scholar

[22] O’Mullane, A. P., Dale, S. E., Day, T. M., Wilson, N. R., Macpherson, J. V., & Unwin, P. R. (2006). Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties. Journal of Solid State Electrochemistry, 10, 792–807. DOI: 10.107/s10008-006-0176-1. http://dx.doi.org/10.1007/s10008-006-0176-110.1007/s10008-006-0176-1Search in Google Scholar

[23] Panáček, A., KvÍtek, L., Prucek, R., Koláø, M., Večeøová, R., Pizúrová, N., Sharma, V. K., Nevečná, T., & Zboøil, R. (2006). Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B, 110, 16248–16253. DOI: 10.1021/jp063826hS1520-6106(06)03826-0. http://dx.doi.org/10.1021/jp063826hSearch in Google Scholar

[24] Pickup, N. L., Shapiro, J. S., & Wong, D. K. Y. (1998). Extraction of silver by polypyrrole films upon a base-acid treatment. Analytica Chimica Acta, 364, 41–51. DOI: 10.1016/S0003-2670(98)00144-5 http://dx.doi.org/10.1016/S0003-2670(98)00144-510.1016/S0003-2670(98)00144-5Search in Google Scholar

[25] Pike, G. E., & Seager, C. H. (1974). Percolation and conductivity: A computer study. 1. Physical Review B, 10, 1421–1434. DOI: 10.1103/PhysRevB.10.1421. http://dx.doi.org/10.1103/PhysRevB.10.142110.1103/PhysRevB.10.1421Search in Google Scholar

[26] Ping, Z. (1996). In situ FTIR-attenuated total reflection spectroscopic investigations on the base-acid transitions of polyaniline. Base-acid transition in the emeraldine form of polyaniline. Journal of the Chemical Society, Faraday Transactions, 92, 3063–3067. DOI: 10.1039/FT9969203063. http://dx.doi.org/10.1039/ft996920306310.1039/FT9969203063Search in Google Scholar

[27] Sapurina, I., Kazantseva, N. E., Ryvkina, N. G., Prokeš, J., Sáha, P., & Stejskal, J. (2005). Electromagnetic radiation shielding by composites of conducting polymers and wood. Journal of Applied Polymer Science, 95, 807–814. DOI: 10.10023/app.21240. http://dx.doi.org/10.1002/app.21240Search in Google Scholar

[28] Scher, H., & Zallen, R. (1970). Critical density in percolation processes. Journal of Chemical Physics, 53, 3759–3761. DOI: 10.1063/1.1674565. http://dx.doi.org/10.1063/1.167456510.1063/1.1674565Search in Google Scholar

[29] Shi, N. L., Guo, X. M., Jing, H. M., Gong, J., Sun, C., & Yang, K. (2006). Antibacterial effect of the conducting polyaniline. Journal of Materials Science and Technology, 22, 289–290. Search in Google Scholar

[30] Stejskal, J., Kratochvíl, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-X. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSearch in Google Scholar

[31] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI: 10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[32] Stejskal, J., Trchová, M., Fedorova, S., Sapurina, I., & Zemek, J. (2003). Surface polymerization of aniline on silica gel. Langmuir, 19, 3013–3018. DOI: 10.1021/la026672f. http://dx.doi.org/10.1021/la026672f10.1021/la026672fSearch in Google Scholar

[33] Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flame-retardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144. http://dx.doi.org/10.1002/app.2214410.1002/app.22144Search in Google Scholar

[34] Stejskal, J., & Sapurina, I. (2005). Polyaniline: Thin films and colloidal dispersions. Pure and Applied Chemistry, 77, 815–826. DOI: 10.1351/pac200577070815. http://dx.doi.org/10.1351/pac200577050815Search in Google Scholar

[35] Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app23873. http://dx.doi.org/10.1002/app.23873Search in Google Scholar

[36] Wang, H.-L., Li, W., Jia, Q. X., & Akhadov, E. (2007). Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters. Chemistry of Materials, 19, 520–525. DOI: 10.1021/cm0619508. http://dx.doi.org/10.1021/cm061950810.1021/cm0619508Search in Google Scholar

Published Online: 2008-3-4
Published in Print: 2008-4-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-008-0009-z/html
Scroll to top button