Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 17, 2008

Statistical properties of the dichotomous noise generated in biochemical processes

  • Michał Kurzyński EMAIL logo

Abstract

Dichotomous noise detected with the help of various single-molecule techniques convincingly reveals the actual occurrence of a multitude of conformational substates composing the native state of proteins. The nature of the stochastic dynamics of transitions between these substates is determined by the particular statistical properties of the noise observed. These involve nonexponential and possibly oscillatory time decay of the second order autocorrelation function, its relation to the third order autocorrelation function, and a relationship to dwell-time distribution densities and their correlations. Processes gated by specific conformational substates are distinguished from those with fluctuating barriers. This study throws light on the intriguing matter of the possibility of multiple stepping of the myosin motor along the actin filament per ATP molecule hydrolyzed.

[1] Kurzyński, M. A synthetic picture of intramolecular dynamics of proteins. Towards a contemporary statistical theory of biochemical processes. Progr. Biophys. Molec. Biol. 69 (1998) 23–82. http://dx.doi.org/10.1016/S0079-6107(97)00033-310.1016/S0079-6107(97)00033-3Search in Google Scholar

[2] Caflish, A. Network and graph analyses of folding free energy surfaces. Curr. Opin. Struct. Biol. 16 (2006) 71–79. http://dx.doi.org/10.1016/j.sbi.2006.01.00210.1016/j.sbi.2006.01.002Search in Google Scholar

[3] Sansom, M.P.S., Ball, F.G., Kerry, C.J., McGee, R., Ramsey, R.J. and Usherwood, P.N.R. Markov, fractal, diffusion, and related models of ion channel gating. A comparison with experimental data from two ion channels. Biophys. J. 56 (1989) 1229–1243. Search in Google Scholar

[4] Fuliński, A., Grzywna, Z., Mellor, I., Siwy, Z. and Usherwood, P.N.R. Non-Markovian character of ionic current fluctuations in membrane channels. Phys. Rev. E 58 (1998) 919–924. http://dx.doi.org/10.1103/PhysRevE.58.91910.1103/PhysRevE.58.919Search in Google Scholar

[5] Lu, H.P., Xun, L. and Xie, S. Single-molecule enzymatic dynamics. Science 282 (1998) 1877–1882. http://dx.doi.org/10.1126/science.282.5395.187710.1126/science.282.5395.1877Search in Google Scholar

[6] Edman, L., Foeldes-Papp, Z., Wennmalm, S. and Rigler, R. The fluctuating enzyme: a single molecule approach. Chem. Phys. 247 (1999) 11–22. http://dx.doi.org/10.1016/S0301-0104(99)00098-110.1016/S0301-0104(99)00098-1Search in Google Scholar

[7] Flomenbom, O., Velonia, K., Loos, D., Masuo, S., Cotlet, M., Engelborghs, Y., Hofkens, J., Rowan, A.E., Nolte, R.J.M., Van der Auweraer, M., de Schryver, F.C. and Klafter, J. Stretched exponential decay and correlations in the catalytic activity of fluctuating single lipase molecules. Proc. Natl. Acad. Sci. USA 102 (2005) 2368–2372. http://dx.doi.org/10.1073/pnas.040903910210.1073/pnas.0409039102Search in Google Scholar

[8] Knight, A.E., Veigel, C., Chambers, C. and Molloy, J.E. Analysis of singlemolecule mechanical recordings: application to acto-myosin interactions. Progr. Biophys. Molec. Biol. 77 (2001) 45–72. http://dx.doi.org/10.1016/S0079-6107(01)00010-410.1016/S0079-6107(01)00010-4Search in Google Scholar

[9] Kurzyński, M. The Thermodynamic Machinery of Life, Springer, Berlin, 2006, Appendixes B and D. Search in Google Scholar

[10] Frauenfelder, H., Sligar, S.G. and Wolynes, P.G. The energy landscapes and motions in proteins. Science 254 (1991) 1598–1602. http://dx.doi.org/10.1126/science.174993310.1126/science.1749933Search in Google Scholar PubMed

[11] Lerch, H.P., Mikhailov, A.S. and Hess, B. Conformational-relaxation models of single-enzyme kinetics. Proc. Natl. Acad. Sci. USA 99 (2002) 15410–15415. http://dx.doi.org/10.1073/pnas.23237679910.1073/pnas.232376799Search in Google Scholar PubMed PubMed Central

[12] Keyes, T. Principles of mode-mode coupling theory, in: Statistical Mechanics, Part B: Time-Dependent Processes (Berne, B.J., Ed.), Plenum, New York, 1977, 259–309. 10.1007/978-1-4615-7906-9_6Search in Google Scholar

[13] Edman, L. and Riegler, R. Memory landscapes of single-enzyme molecules. Proc. Natl. Acad. Sci. USA 97 (2000) 8266–8271. http://dx.doi.org/10.1073/pnas.13058939710.1073/pnas.130589397Search in Google Scholar

[14] Quian, H. and Elson, E.L. Single-molecule enzymology: stochastic Michaelis-Menten kinetics. Biophys. Chem. 101 (2002) 565–576. http://dx.doi.org/10.1016/S0301-4622(02)00145-X10.1016/S0301-4622(02)00145-XSearch in Google Scholar

[15] Boguna, M., Berezhkovskii, A.M. and Weiss, G.H. Residence time densities for non-Markovian systems. The two-state system. Physica A 282 (2000) 474–485. Search in Google Scholar

[16] Flomenbom, O. and Silbey, R.J. Utilizing the information content in twostate trajectories. Proc. Natl. Acad. Sci. USA 103 (2006) 10907–10910. http://dx.doi.org/10.1073/pnas.060454610310.1073/pnas.0604546103Search in Google Scholar

[17] Bruno, W.J., Yang, J. and Pearson, J.E. Using independent open-to-closed transitions to simplify aggregated Markov models of ion gating kinetics. Proc. Natl. Acad. Sci. USA 102 (2006) 6326–6331. http://dx.doi.org/10.1073/pnas.040911010210.1073/pnas.0409110102Search in Google Scholar

[18] Kurzynski, M. and Chelminiak, P. Mean first-passage time in the stochastic theory of biochemical processes. Application to actomyosin molecular motor. J. Statist. Phys. 110 (2003) 137–181. http://dx.doi.org/10.1023/A:102101872831210.1023/A:1021018728312Search in Google Scholar

[19] Kurzynski, M. The Thermodynamic Machinery of Life, Springer, Berlin, 2006, Chapter 9, see also errata. 10.1007/3-540-33654-0Search in Google Scholar

[20] Howard, J. Mechanics of Motor Proteins and the Cytoskeleton, Sinauer, Sunderland, 2001. Search in Google Scholar

[21] Kitamura, K., Tokunaga, M., Iwane, A.H. and Yanagida, T. A single Mosin head moves along an actin filament with regular steps of 5.3 nanometers. Nature 397 (1999) 129–134. http://dx.doi.org/10.1038/1640310.1038/16403Search in Google Scholar

[22] Kitamura, K., Tokunaga, M., Esaki, S., Iwane, A.H. and Yanagida, T. Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1 (2005) 1–19. http://dx.doi.org/10.2142/biophysics.1.110.2142/biophysics.1.1Search in Google Scholar

[23] Liu, X. and Pollack, G.H. Stepwise sliding of single actin and myosin filaments. Biophys. J. 86 (2004) 353–358. http://dx.doi.org/10.1016/S0006-3495(04)74111-910.1016/S0006-3495(04)74111-9Search in Google Scholar

[24] Kojima, H., Kikumoto, M., Sakakibara, H. and Oiwa, K. Mechanical properties of a single-headed processive motor, inner-arm dynein subspecies-c of Chlamydomonas studied at the single molecule level. J. Biol. Phys. 28 (2002) 335–345. http://dx.doi.org/10.1023/A:102030031922410.1023/A:1020300319224Search in Google Scholar

[25] Mallik, R., Carter, B.C., Lex, S.A., King, S.J. and Gross, S.P. Cytoplasmic dynein functions as a gear in response to load. Nature 427 (2004) 649–652. http://dx.doi.org/10.1038/nature0229310.1038/nature02293Search in Google Scholar PubMed

[26] Shao, Q. and Gao, Y.Q. On the hand-over-hand mechanism of kinesin. Proc. Natl. Acad. Sci. USA 103 (2006) 8072–8077. http://dx.doi.org/10.1073/pnas.060282810310.1073/pnas.0602828103Search in Google Scholar PubMed PubMed Central

Published Online: 2008-10-17
Published in Print: 2008-12-1

© 2008 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-008-0021-x/html
Scroll to top button