Skip to main content
Log in

A quantum particle motion and thermodynamics in faults-defects field: Path integral formulation based on extended deformation gradient tensor

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

We consider the effect of the faults-defects (FD) field on the following quantum phenomena: (i) the motion of a particle expressed by the Green function; (ii) thermodynamic phenomena expressed by the partition function. We use the path integral formulation based on the extended deformation gradient (EDG) tensor. This formulation connects the Green function of (i) with the partition function of (ii) to describe the thermodynamics in terms of a quantum particle motion. We obtain the following results: (a) The Lagrangian in the Green function includes the new potential consisting of stress functions that shift the path of the free particle from the shortest distance; (b) The solution of the partition function in one-dimensional space makes it possible to deduce the thermodynamic relations in the FD field. Such results could not be obtained by taking the traditional mechanical and quantum approaches, so the path integral formulation based on the EDG tensor is a useful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aharonov, Y., and D. Bohm (1959), Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 3, 485–491, DOI: 10.1103/PhysRev. 115.485.

    Article  Google Scholar 

  • Aki, K., and P.G. Richards (2002), Quantitative Seismology, 2nd ed., University Science Books, Sausalito, CA, 700 pp.

    Google Scholar 

  • Bilby, B.A., R. Bullough, and E. Smith (1955), Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry, Proc. Roy. Soc. A 231, 1185, 263–273, DOI: 10.1098/rspa.1955.0171.

    Article  Google Scholar 

  • Das, A. (2006), Field Theory: A Path Integral Approach (Lecture Notes in Physics, Vol. 75), 2nd ed., World Scientific, Singapore, 362 pp.

    Google Scholar 

  • Feynman, R.P., and A.R. Hibbs (1965), Quantum Mechanics and Path Integrals, McGraw-Hill, New York.

    Google Scholar 

  • Hu, S. (2001), Lecture Notes on Chern-Simons-Witten theory, World Scientific, Singapore.

    Google Scholar 

  • Kawamura, K. (1978), Scattering of electrons due to screw dislocations, Z. Physik B 30, 1, 1–11, DOI: 10.1007/BF01323663.

    Article  Google Scholar 

  • Kitahara, K., K. Nakazato, and H. Araki (1983), Path integral foundation of quantum propagation in a dislocated lattice. In: T. Ninomiya and F. Yonezawa (eds.), Topological Disorder in Condensed Matter, Springer, New York, 153–162.

    Google Scholar 

  • Kleinert, H. (2004), Path Integrals in Quantum Mechanics, Statistics Polymer Physics, and Financial Markets, 3rd ed., World Scientific, Singapore.

    Google Scholar 

  • Kondo, K. (1952), On the geometrical and physical foundation of the theory of yielding, Proc. 2nd Japan National Congr. on Applied Mechanics (Tokyo) 2, 41–47.

    Google Scholar 

  • Kossecka, E., and R. DeWitt (1977), Disclination kinematics, Arch. Mech. 29, 633–651.

    Google Scholar 

  • Majewski, E. (2001), Thermodynamics of fault slip. In: R. Teisseyre and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Academic Press, San Diego, 323–327.

    Chapter  Google Scholar 

  • Majewski, E., and R. Teisseyre (1997), Earthquake thermodynamics, Tectonophysics 227, 1–3, 219–233, DOI: 10.1016/S0040-1951(97)00088-7.

    Article  Google Scholar 

  • Nishiyama, Y., K.Z. Nanjo, and K. Yamasaki (2008), Geometrical minimum units of fracture patterns in two-dimensional space: Lattice and discrete Walsh functions, Physica A 387, 25, 6252–6262, DOI: 10.1016/j.physa.2008.07.014.

    Article  Google Scholar 

  • Steketee, J.A. (1958), On Volterra’s dislocations in a semi-infinite elastic medium, Can. J. Phys. 36, 192–205.

    Google Scholar 

  • Swanson, M.S. (1992), Path Integrals and Quantum Processes, Academic Press, Boston.

    Google Scholar 

  • Takeo, M., and H. Ito (1997), What can be learned from rotational motions excited by earthquakes?, Geophys. J. Int. 129, 2, 319–329, DOI: 10.1111/j.1365-246X.1997.tb01585.x.

    Article  Google Scholar 

  • Teisseyre, R. (1995), Differential geometry methods in deformation problems. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, Polish Scientific Publisher, Warszawa, 503–544.

    Google Scholar 

  • Teisseyre, R., and E. Majewski (2001), Thermodynamics of line defects and earthquake thermodynamics. In: R. Teisseyre and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Academic Press, San Diego, 261–278.

    Chapter  Google Scholar 

  • Teisseyre, R., M. Takeo, and E. Majewski (eds.) (2006), Earthquake Source Asymmetry, Structural Media and Rotation Effects, Springer, Berlin.

    Book  Google Scholar 

  • Yamasaki, K. (2005), Tensor analysis of dislocation-stress relationship based on the extended deformation gradient, Acta Geophys. Pol. 53, 1–12.

    Google Scholar 

  • Yamasaki, K. (2007), Betti numbers of defects field, Forma 22, 191–197.

    Google Scholar 

  • Yamasaki, K., and H. Nagahama (1999), Hodge duality and continuum theory of defects, J. Phys. A: Math. Gen. 32, 44, L475–L481, DOI: 10.1088/0305-4470/32/44/103.

    Article  Google Scholar 

  • Yamasaki, K., and H. Nagahama (2002), A deformed medium including a defect field and differential forms, J. Phys. A: Math. Gen. 35, 16, 3767–3778, DOI: 10.1088/0305-4470/35/16/315.

    Article  Google Scholar 

  • Yamasaki, K., and H. Nagahama, (2008), Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem, ZAMM: J. Appl. Math. Mech. 88, 6, 515–520, DOI: 10.1002/zamm.200700140.

    Article  Google Scholar 

  • Yamasaki, K., and K.Z. Nanjo (2009), A new mathematical tool for analyzing the fracturing process in rock: Partial symmetropy of microfracturing, Phys. Earth Planet. Inter. 173, 3–4, 297–305, DOI: 10.1016/j.pepi.2009.01.010.

    Article  Google Scholar 

  • Witten, E. (1989) Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 3, 351–399, DOI: 10.1007/BF01217730.

    Article  Google Scholar 

  • Wiegel, F.W. (1975), Path integral methods in statistical mechanics, Phys. Rep. 16, 2, 57–114, DOI: 10.1016/0370-1573(75)90030-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, K. A quantum particle motion and thermodynamics in faults-defects field: Path integral formulation based on extended deformation gradient tensor. Acta Geophys. 57, 567–582 (2009). https://doi.org/10.2478/s11600-009-0016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0016-7

Key words

Navigation