Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access January 7, 2014

Skin extracellular matrix components accelerate the regenerative potential of Lin− cells

  • Giedrė Ramanauskaitė EMAIL logo , Dovilė Žalalytė , Vytautas Kašėta , Aida Vaitkuvienė , Lilija Kalėdienė and Genė Biziulevičienė
From the journal Open Life Sciences

Abstract

Due to their unique properties, bone marrow-derived Lin− cells can be used to regenerate damaged tissues, including skin. The objective of our study was to determine the influence of the skin tissue-specific microenvironment on mouse Lin− cell proliferation and migration in vitro. Cells were analyzed for the expression of stem/progenitor surface markers by flow cytometry. Proliferation of MACS-purified cells in 3D cultures was investigated by WST-8 assay. Lin− cell migration was evaluated by in vitro scratch assay. The results obtained show that basement membrane matrix is more effective for Lin− cell proliferation in vitro. However, type I collagen matrix better enhances the re-epithelization process, that depends on the cell migratory properties. These studies are important for preparing cells to be used in transplantation.

[1] Baraniak P.R., McDevitt T.C., Stem cell paracrine actions and tissue regeneration, Regen. Med., 2010, 5, 121–143 http://dx.doi.org/10.2217/rme.09.7410.2217/rme.09.74Search in Google Scholar

[2] Hipp J., Atala A., Sources of stem cells for regenerative medicine, Stem Cell Rev., 2008, 4, 3–11 http://dx.doi.org/10.1007/s12015-008-9010-810.1007/s12015-008-9010-8Search in Google Scholar

[3] Wu Y., Zhao R.C.H., Tredget E.E., Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration, Stem Cells, 2010, 28, 905–915 10.1002/stem.420Search in Google Scholar

[4] Yang J., Ii M., Kamei N., Alev C., Kwon S.-M., Kawamoto A., et al., CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow, PloS ONE, 2011, 6, e20219 http://dx.doi.org/10.1371/journal.pone.002021910.1371/journal.pone.0020219Search in Google Scholar

[5] Herzog E.L., Chai L., Krause D.S., Plasticity of marrow-derived stem cells, Blood, 2003, 102, 3483–3493 http://dx.doi.org/10.1182/blood-2003-05-166410.1182/blood-2003-05-1664Search in Google Scholar

[6] Li Ch., Zheng Y., Wang X., Xia W., Gao H., Li D., et al., Bone marrow-derived stem cells contribute skin regeneration in skin and soft tissue expansion, J. Cell. Physiol., 2011, 226, 2834–2840 http://dx.doi.org/10.1002/jcp.2263410.1002/jcp.22634Search in Google Scholar

[7] Watt F.M., Fujiwara H., Cell-extracellular matrix interactions in normal and diseased skin, Cold Spring Harb. Perspect. Biol., 2011, 3, a005124 http://dx.doi.org/10.1101/cshperspect.a00512410.1101/cshperspect.a005124Search in Google Scholar

[8] Amadeu T.P., Coulomb B., Desmouliere A., Costa A.M.A., Cutaneous wound healing: myofibroblastic differentiation and in vitro models, Int. J. Low. Extrem. Wounds., 2003, 2, 60–68 http://dx.doi.org/10.1177/153473460325615510.1177/1534734603256155Search in Google Scholar

[9] Liang Ch.-Ch., Park A.Y., Guan J.-L., In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nat. Protoc., 2007, 2, 329–333 http://dx.doi.org/10.1038/nprot.2007.3010.1038/nprot.2007.30Search in Google Scholar

[10] Zegers M.M.P., O’Brien L.E., Yu W., Datta A., Mostov K.E., Epithelial polarity and tubulogenesis in vitro, Trends Cell Biol., 2003, 13, 169–176 http://dx.doi.org/10.1016/S0962-8924(03)00036-910.1016/S0962-8924(03)00036-9Search in Google Scholar

[11] Oswald J., Boxberger S., Jørgensen B., Feldmann S., Ehninger G., Bornhäuser M., et al., Mesenchymal stem cells can be differentiated into endothelial cells in vitro, Stem Cells, 2004, 22, 377–384 http://dx.doi.org/10.1634/stemcells.22-3-37710.1634/stemcells.22-3-377Search in Google Scholar PubMed

[12] Wang Z., Wang Y., Farhangfar F., Zimmer M., Zhang Y., Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts, PLoS ONE, 2012, 7, e40951 http://dx.doi.org/10.1371/journal.pone.004095110.1371/journal.pone.0040951Search in Google Scholar PubMed PubMed Central

[13] Astori G., Soncin S., Lo Cicero V., Siclari F., Sürder D., Turchetto L., et al., Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products, Am. J. Transl. Res., 2010, 2, 285–295 Search in Google Scholar

[14] Siggins R.W., Zhang P., Welsh D., LeCapitaine N.J., Nelson S., Stem cells, phenotypic inversion, and differentiation, Int. J. Clin. Exp. Med., 2008, 1, 2–21 Search in Google Scholar

[15] Tárnok A., Ulrich H., Bocsi J., Phenotypes of stem cells from diverse origin, Cytom. Part A, 2010, 77A, 6–10 http://dx.doi.org/10.1002/cyto.a.2084410.1002/cyto.a.20844Search in Google Scholar PubMed

[16] Kucia M., Ratajczak J., Ratajczak M.Z., Are bone marrow stem cells plastic or heterogenous — that is the question, Exp. Hematol., 2005, 33, 613–623 http://dx.doi.org/10.1016/j.exphem.2005.01.01610.1016/j.exphem.2005.01.016Search in Google Scholar PubMed

[17] Jamous M., Al-Zoubi A., Khabaz M.N., Khaledi R., Khateeb M.A., Al-Zoubi Z., Purification of mouse bone marrow-derived stem cells promotes ex vivo neuronal differentiation, Cell Transplant., 2010, 19, 193–202 http://dx.doi.org/10.3727/096368910X49259910.3727/096368910X492599Search in Google Scholar PubMed

[18] Challen G.A., Boles N., Lin K.Y.K., Goodell M.A., Mouse hematopoietic stem cell identification and analysis, Cytometry A, 2009, 75A, 14–24 http://dx.doi.org/10.1002/cyto.a.2067410.1002/cyto.a.20674Search in Google Scholar PubMed PubMed Central

[19] Ivanova N.B., Dimos J.T., Schaniel C., Hackney J.A., Moore K.A., Lemischka I.R., A stem cell molecular signature, Science, 2002, 298, 601–604 http://dx.doi.org/10.1126/science.107382310.1126/science.1073823Search in Google Scholar PubMed

[20] Dawn B., Bolli R., Adult bone marrow-derived cells: regenerative potential, plasticity, and tissue commitment, Basic Res. Cardiol., 2005, 100, 494–503 http://dx.doi.org/10.1007/s00395-005-0552-510.1007/s00395-005-0552-5Search in Google Scholar PubMed PubMed Central

[21] Spees J.L., Whitney M.J., Sullivan D.E., Lasky J.E., Laboy M., Ylostalo J., et al., Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension, FASEB J., 2008, 22, 1226–1236 http://dx.doi.org/10.1096/fj.07-8076com10.1096/fj.07-8076comSearch in Google Scholar PubMed

[22] Yeagy B.A., Harrison F., Gubler M.-C., Koziol J.A., Salomon D.R., Cherqui S., Kidney preservation by bone marrow cell transplantation in hereditary nephropathy, Kidney Int., 2011, 79, 1198–1206 http://dx.doi.org/10.1038/ki.2010.53710.1038/ki.2010.537Search in Google Scholar PubMed

[23] Hodgkinson T., Yuan X.-F., Bayat A., Adult stem cells in tissue engineering, Expert Rev. Med. Devic., 2009, 6, 621–640 http://dx.doi.org/10.1586/erd.09.4810.1586/erd.09.48Search in Google Scholar

[24] Tibbitt M.W., Anseth K.S., Hydrogels as extracellular matrix mimics for 3D cell culture, Biotechnol. Bioeng., 2009, 103, 655–663 http://dx.doi.org/10.1002/bit.2236110.1002/bit.22361Search in Google Scholar

[25] Bott K., Upton Z., Schobback K., Ehrbar M., Hubbel J.A., Lutolf M.P., et al., The effect of matrix characteristics on fibroblast proliferation in 3D gels, Biomaterials, 2010, 31, 8454–8464 http://dx.doi.org/10.1016/j.biomaterials.2010.07.04610.1016/j.biomaterials.2010.07.046Search in Google Scholar

[26] Visser M.B., Pollitt C.C., Characterization of extracellular matrix macromolecules in primary cultures of equine keratinocytes, BMC Vet. Res., 2010, 6, 16–24 http://dx.doi.org/10.1186/1746-6148-6-1610.1186/1746-6148-6-16Search in Google Scholar

[27] Penolazzi L., Mazzitelli S., Vecchiatini R., Torreggiani E., Lambertini E., Johnson S., et al., Human mesenchymal stem cells seeded on extracellular matrix-scaffold: viability and osteogenic potential, J. Cell. Physiol., 2012, 227, 857–866 http://dx.doi.org/10.1002/jcp.2298310.1002/jcp.22983Search in Google Scholar

[28] Segal N., Andriani F., Pfeiffer L., Kamath P., Lin N., Satyamurthy K., et al., The basement membrane microenvironment directs the normalization and survival of bioengineered human skin equivalents, Matrix Biol., 2008, 27, 163–170 http://dx.doi.org/10.1016/j.matbio.2007.09.00210.1016/j.matbio.2007.09.002Search in Google Scholar

[29] Tsai K.-S., Kao S.-Y., Wang C.-Y., Wang Y.-J., Wang J.-P., Hung S.-C., Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways, J. Biomed. Mater. Res., 2010, 94A, 673–682 10.1002/jbm.a.32693Search in Google Scholar

[30] Matsubara T., Tsutsumi S., Pan H., Hiraoka H., Oda R., Nishimura M., et al., A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix, Biochem. Biophys. Res. Commun., 2004, 313, 503–508 http://dx.doi.org/10.1016/j.bbrc.2003.11.14310.1016/j.bbrc.2003.11.143Search in Google Scholar

[31] Thampatty B.P., Wang J.H.-C., A new approach to study fibroblast migration, Cell Motil. Cytoskel., 2007, 64, 1–5 http://dx.doi.org/10.1002/cm.2016610.1002/cm.20166Search in Google Scholar

[32] Lee C.H., Singla A., Lee Y., Biomedical applications of collagen, Int. J. Pharm., 2001, 221, 1–22 http://dx.doi.org/10.1016/S0378-5173(01)00691-310.1016/S0378-5173(01)00691-3Search in Google Scholar

[33] LeBleu V.S., MacDonald B., Kalluri L., Structure and functions of basement membranes, Exp. Biol. Med., 2007, 232, 1121–1129 http://dx.doi.org/10.3181/0703-MR-7210.3181/0703-MR-72Search in Google Scholar PubMed

[34] Hakkinen K.M., Harunaga J.S., Doyle A.D., Yamada K.M., Direct comparison of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices, Tissue Eng. Part A, 2011, 17, 713–724 http://dx.doi.org/10.1089/ten.tea.2010.027310.1089/ten.tea.2010.0273Search in Google Scholar

[35] O’Toole E.A., Extracellular matrix and keratincyte migration, Clin. Exp. Dermatol., 2001, 26, 525–530 http://dx.doi.org/10.1046/j.1365-2230.2001.00891.x10.1046/j.1365-2230.2001.00891.xSearch in Google Scholar PubMed

[36] Boleman A.I., TĂnasie G., GĂluşcan A., Cristea M.I., Bojin F.M., Panaitescu C., et al., Studies regarding the in vitro wound healing potential of mouse dental pulp stem-like progenitor cells, Biotechnol. & Biotechnol. Eq., 2012, 26, 2781–2785 http://dx.doi.org/10.5504/bbeq.2011.014410.5504/BBEQ.2011.0144Search in Google Scholar

[37] Li W., Fan J., Chen M., Guan S., Sawcer D., Bokoch G.M., et al., Mechanism of human dermal fibroblast migration driven by type I collagen and platelet-derived growth factor-BB, Mol. Biol. Cell., 2004, 15, 294–309 http://dx.doi.org/10.1091/mbc.E03-05-035210.1091/mbc.e03-05-0352Search in Google Scholar PubMed PubMed Central

Published Online: 2014-1-7
Published in Print: 2014-4-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0283-9/html
Scroll to top button