Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 9, 2013

Composition, antimicrobial and antioxidant activity of the extracts of Eryngium palmatum Pančić and Vis. (Apiaceae)

  • Mirjana Marčetić EMAIL logo , Silvana Petrović , Marina Milenković and Marjan Niketić
From the journal Open Life Sciences

Abstract

The chemical composition, antimicrobial and antioxidant activity of Eryngium palmatum, an endemic plant species from the Balkan Peninsula, were investigated. The flavonoids apigenin (9.5±0.3 mg g−1) and apigenin 7-O-glucoside (2.4±0.1 mg g−1) were determined in a methanol extract of aerial parts using HPLC analysis. The methanol extract of roots contained catechin (5.0±0.1 mg g−1), epicatechin (2.9±0.1 mg g−1), chlorogenic acid (1.6±0.0 mg g−1), gallic acid (0.9±0.0 mg g−1) and rosmarinic acid (0.9±0.2 mg g−1). GC-FID and GCMS analysis of a chloroform extract of aerial parts showed that the main volatile constituents were falcarinol, linoleic acid, hexadecanoic acid and methyl linoleate (comprising 32.6%; 24.4%; 19.9; 13.2% of the volatile fraction, respectively), while octanoic acid, tetradecanol and dodecanol dominated in the chloroform extract of the roots (34.9%; 25.8%; 22.2% of the volatile fraction, respectively). Investigation of antimicrobial activity by broth microdilution showed that the methanol and chloroform extracts of aerial parts and roots exerted a significant effect (MIC 3.5–15.6 μg mL−1) against tested Gram-positive and Gram-negative bacteria. The methanol extracts of aerial parts or roots exerted moderate ferric reducing antioxidant power, DPPH radical scavenging activity and hydroxyl radical scavenging activity.

[1] Calviño C.I., Martínez S.G., Downie S.R., The evolutionary history of Eryngium (Apiaceae, Saniculoideae): Rapid radiations, long distance dispersals, and hybridizations, Mol. Phylogenet. Evol., 2008, 46, 1129–1150 http://dx.doi.org/10.1016/j.ympev.2007.10.02110.1016/j.ympev.2007.10.021Search in Google Scholar PubMed

[2] Küpeli E., Kartal M., Aslan S., Yesilada E., Comparative evaluation of the anti-inflammatory and antinociceptive activity of Turkish Eryngium species, J. Ethnopharmacol., 2006, 107, 32–37 http://dx.doi.org/10.1016/j.jep.2006.02.00510.1016/j.jep.2006.02.005Search in Google Scholar PubMed

[3] Mekhora C., Muangnoi C., Chingsuwanrote P., Dawilai S., Svasti S., Chasri K., et al., Eryngium foetidum suppresses inflammatory mediators produced by macrophages, Asian Pac. J. Cancer Prev., 2012, 13, 653–664 http://dx.doi.org/10.7314/APJCP.2012.13.2.65310.7314/APJCP.2012.13.2.653Search in Google Scholar

[4] Kartnig T., Wolf J., Flavonoids from the aboveground parts of Eryngium campestre, Planta Med., 1993, 59, 285 http://dx.doi.org/10.1055/s-2006-95967610.1055/s-2006-959676Search in Google Scholar PubMed

[5] Le Claire E., Schwaiger S., Banaigs B., Stuppner H., Gafner F., Distribution of a new rosmarinic acid derivative in Eryngium alpinum L. and other Apiaceae, J. Agric. Food Chem., 2005, 53, 4367–4372 http://dx.doi.org/10.1021/jf050024v10.1021/jf050024vSearch in Google Scholar PubMed

[6] Cádiz-Gurrea M.L., Fernández-Arroyo S., Joven J., Segura-Carretero A., Comprehensive characterization by UHPLC-ESI-Q-TOF-MS from an Eryngium bourgatii extract and their antioxidant and anti-inflammatory activities, Food Res. Int., 2013, 50, 197–204 http://dx.doi.org/10.1016/j.foodres.2012.09.03810.1016/j.foodres.2012.09.038Search in Google Scholar

[7] Cavaleiro C., Gonçalves M.J., Serra D., Santoro G., Tomi F., Bighelli A., et al., Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. Laínz) M. Laínz, signalized by the antifungal activity, J. Pharm. Biomed. Anal., 2011, 54, 619–622 http://dx.doi.org/10.1016/j.jpba.2010.09.03910.1016/j.jpba.2010.09.039Search in Google Scholar PubMed

[8] Çelik A., Aydinlik N., Arslan I., Phytochemical constituents and inhibitory activity towards methicillin-resistant Staphylococcus aureus strains of Eryngium species (Apiaceae), Chem. Biodivers., 2011, 8, 454–459 http://dx.doi.org/10.1002/cbdv.20100012410.1002/cbdv.201000124Search in Google Scholar PubMed

[9] Chater A.O., Eryngium L., In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., et al. (Eds.),Flora Europaea, Cambridge University Press, London, 1968, Vol. 2, 320–324 Search in Google Scholar

[10] Gibbons S., Phytochemicals for bacterial resistance — strengths, weaknesses and opportunities, Planta Med., 2008, 74, 594–602 http://dx.doi.org/10.1055/s-2008-107451810.1055/s-2008-1074518Search in Google Scholar PubMed

[11] Ziech D., Anestopoulos I., Hanafi R., Voulgaridou G.P., Franco R., Georgakilas A.G., et al., Pleiotrophic effects of natural products in ROS-induced carcinogenesis: the role of plant-derived natural products in oral cancer chemoprevention, Cancer Lett., 2012, 327, 16–25 http://dx.doi.org/10.1016/j.canlet.2012.02.02510.1016/j.canlet.2012.02.025Search in Google Scholar PubMed

[12] Martin K.W., Ernst E., Herbal medicines for treatment of bacterial infections: a review of controlled clinical trials, J. Antimicrob. Chemother., 2003, 51, 241–246 http://dx.doi.org/10.1093/jac/dkg08710.1093/jac/dkg087Search in Google Scholar

[13] Makkar H.P.S., Hagerman A., Harvey-Mueller I., Quantification of Tannins in Tree Foliage — A Laboratory Manual, FAO/IAEA, Vienna, 2000 Search in Google Scholar

[14] Adams R.P., Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy, Allured Publishing Corporation, Illinois, 2001 Search in Google Scholar

[15] Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing, 17th Informational Supplement, CLSI document M100-S17, ISBN 1-56238-625-5, 2007 Search in Google Scholar

[16] Benzie I.F., Strain J.J., The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay, Anal. Biochem., 1996, 239, 70–76 http://dx.doi.org/10.1006/abio.1996.029210.1006/abio.1996.0292Search in Google Scholar

[17] Szőllősi R., Varga Szőllősi I., Total antioxidant power in some species of Labiatae (Adaptation of FRAP method), Act. Biol. Szeg., 2002, 46(3–4), 125–127 Search in Google Scholar

[18] Bondet V., Brand-Williams W., Berset C., Kinetics and Mechanisms of Antioxidant Activity using the DPPH· Free Radical Method, Lebensm.-Wiss. Technol., 1997, 30, 609–615 http://dx.doi.org/10.1006/fstl.1997.024010.1006/fstl.1997.0240Search in Google Scholar

[19] Lee J.C., Kim J., Park J.K., Chung G.H., Jang Y.S., The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis, Exp. Cell Res., 2003, 291, 386–397 http://dx.doi.org/10.1016/S0014-4827(03)00410-510.1016/S0014-4827(03)00410-5Search in Google Scholar

[20] Dalar A., Konczak I., Botanicals from Eastern Anatolia region of Turkey: Antioxidant capacity and phenolic constituents of endemic herbal medicines, J. Herb. Med., 2012, 2, 126–135 http://dx.doi.org/10.1016/j.hermed.2012.08.00110.1016/j.hermed.2012.08.001Search in Google Scholar

[21] Kikowska M., Budzianowski J., Krawczyk A., Thiem B., Accumulation of rosmarinic, chlorogenic and caffeic acids in in vitro cultures of Eryngium planum L. Acta Physiol. Plant., 2012, 34, 2425–2433 http://dx.doi.org/10.1007/s11738-012-1011-110.1007/s11738-012-1011-1Search in Google Scholar

[22] Tegos G., Stermitz F.R., Lomovskaya O., Lewis K., Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials, Antimicrob. Agents Chemother., 2002, 46, 3133–3141 http://dx.doi.org/10.1128/AAC.46.10.3133-3141.200210.1128/AAC.46.10.3133-3141.2002Search in Google Scholar PubMed PubMed Central

[23] Akroum S., Bendjeddou D., Satta D., Lalaoui K., Antibacterial activity and acute toxicity effect of flavonoids extracted from Mentha longifolia, Am. Eurasian J. Sci. Res., 2009, 4, 93–96 10.4103/0973-8258.69174Search in Google Scholar

[24] Cowan M.M., Plant products as antimicrobial agents, Clin. Microbiol. Rev. 1999, 12, 564–582 10.1128/CMR.12.4.564Search in Google Scholar PubMed PubMed Central

[25] Cushnie T.P., Lamb A.J., Antimicrobial activity of flavonoids, Int. J. Antimicrob. Agents, 2005, 26, 343–356 http://dx.doi.org/10.1016/j.ijantimicag.2005.09.00210.1016/j.ijantimicag.2005.09.002Search in Google Scholar PubMed PubMed Central

[26] Kobaisy M., Abramowski Z., Lermer L., Saxena G., Hancock R.E., Towers G.H. et al., Antimycobacterial polyynes of devil’s club (Oplopanax horridus), a North American native medicinal plant, J. Nat. Prod., 1997, 60, 1210–1213 http://dx.doi.org/10.1021/np970182j10.1021/np970182jSearch in Google Scholar

[27] Kabara J.J., Swieczkowski D.M., Conley A.J., Truant J.P., Fatty acids and derivatives as antimicrobial agents, Antimicrob. Agents Chemother., 1972, 2, 23–28 http://dx.doi.org/10.1128/AAC.2.1.2310.1128/AAC.2.1.23Search in Google Scholar

[28] Zheng C.J., Yoo J.S., Lee T.G., Cho H.Y., Kim Y.H., Kim W.G., Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids, FEBS Lett., 2005, 579, 5157–5162 http://dx.doi.org/10.1016/j.febslet.2005.08.02810.1016/j.febslet.2005.08.028Search in Google Scholar

[29] Hulánková R., Bořilová G., In vitro combined effect of oregano essential oil and caprylic acid against Salmonella serovars, Escherichia coli O157:H7, Staphylococcus aureus and Listeria monocytogenes, Acta Vet. Brno, 2011, 80, 343–348 http://dx.doi.org/10.2754/avb20118004034310.2754/avb201180040343Search in Google Scholar

[30] Kubo I., Muroi H., Kubo A., Naturally occurring antiacne agents, J. Nat. Prod., 1994, 57, 9–17 http://dx.doi.org/10.1021/np50103a00210.1021/np50103a002Search in Google Scholar

[31] Togashi N., Shiraishi A., Nishizaka M., Matsuoka K., Endo K., Hamashima H., et al., Antibacterial activity of long-chain fatty alcohols against Staphylococcus aureus, Molecules, 2007, 12, 139–148 http://dx.doi.org/10.3390/1202013910.3390/12020139Search in Google Scholar

[32] Afanas’ev I.B., Dorozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I., Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation, Biochem. Pharmacol., 1989, 38, 1763–1769 http://dx.doi.org/10.1016/0006-2952(89)90410-310.1016/0006-2952(89)90410-3Search in Google Scholar

[33] Nabavi S.M., Nabavi S.F., Alinezhad H., Zare M., Azimi R., Biological activities of flavonoid-rich fraction of Eryngium caucasicum Trautv., Eur. Rev. Med. Pharmacol. Sci., 2012, 16(3), 81–87 Search in Google Scholar

Published Online: 2013-11-9
Published in Print: 2014-2-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0247-0/html
Scroll to top button