Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 2, 2013

Histopathological indicators: a useful fish health monitoring tool in common carp (Cyprinus carpio Linnaeus, 1758) culture

  • Božidar Rašković EMAIL logo , Ivan Jarić , Vesna Koko , Milan Spasić , Zorka Dulić , Zoran Marković and Vesna Poleksić
From the journal Open Life Sciences

Abstract

In order to evaluate the relationship between water quality in ponds and indices of histopathological changes occurring in the vital organs of the common carp (Cyprinus carpio L., 1758), two six-month field experiments were carried out using two different water supplies: from the nearby stream and a tube well. The fish were fed supplemental feed: raw cereals, pelleted and extruded compound feed. Histopathological analysis, alteration frequencies, and semi-quantitative scoring of the changes were used to assess the health status of the fish. Ponds supplied by stream water were characterized by higher water hardness, dissolved oxygen and pH values, while those supplied by the tube well had higher electroconductivity, total ammonium and orthophosphates content. Fish survival rate and habitat suitability index were lower in ponds supplied by stream water, while the weight gain did not differ between the two water supplies. The use of stream water resulted in a higher level of histopathological changes in gills and liver. Among the water quality parameters, pH level had the strongest influence on fish. Differences in water supply produced greater influence on the level of histopathological changes than the type of feed applied. Gills were the most sensitive organ, while the kidney was the least responsive.

[1] Hinton D.E., Lauren D.J., Integrative histopathological approaches to detecting effects of environmental stressors on fishes, In: Adams R., Lloyd R. (Eds.), Biological indicators of stress in fish, American Fisheries Society, Bethesda, Maryland, 1990 Search in Google Scholar

[2] van der Oost R., Beyer J., Vermeulen N.P.E., Fish bioaccumulation and biomarkers in environmental risk assessment: a review, Environ. Toxicol. Pharmacol., 2003, 13, 57–149 http://dx.doi.org/10.1016/S1382-6689(02)00126-610.1016/S1382-6689(02)00126-6Search in Google Scholar

[3] Schwaiger J., Wanke R., Adam S., Pawert M., Honnen W., Triebskorn R., The use of histopathological indicators to evaluate contaminant-related stress in fish, J. Aquat. Ecosyst. Stress Recovery, 1997, 6, 75–86 http://dx.doi.org/10.1023/A:100821200020810.1023/A:1008212000208Search in Google Scholar

[4] Teh S.J., Adams S.M., Hinton D.E., Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress, Aquat. Toxicol., 1997, 37, 51–70 http://dx.doi.org/10.1016/S0166-445X(96)00808-910.1016/S0166-445X(96)00808-9Search in Google Scholar

[5] Bernet D., Schmidt-Posthaus H., Wahli T., Burkhardt-Holm P., Evaluation of two monitoring approaches to assess effects of waste water disposal on histological alterations in fish, Hydrobiologia, 2004, 524, 53–66 http://dx.doi.org/10.1023/B:HYDR.0000036196.84682.2710.1023/B:HYDR.0000036196.84682.27Search in Google Scholar

[6] Camargo M.M.P., Martinez C.B.R., Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream, Neotrop. Ichthyol., 2007, 5, 327–336 http://dx.doi.org/10.1590/S1679-6225200700030001310.1590/S1679-62252007000300013Search in Google Scholar

[7] Carbis C.R., Rawlin G.T., Grant P., Mitchell G.F., Anderson J.W., McCauley I., A study of feral carp, Cyprinus carpio L., exposed to Microcystis aeruginosa at Lake Mokoan, Australia, and possible implications for fish health, J. Fish Dis., 1997, 20, 81–91 http://dx.doi.org/10.1046/j.1365-2761.1997.d01-111.x10.1046/j.1365-2761.1997.d01-111.xSearch in Google Scholar

[8] Dulić Z., Poleksić V., Rašković B., Lakić N., Marković Z., Živić I., et al., Assessment of the water quality of aquatic resources using biological methods, Desalin. Water Treat., 2009, 11, 264–274 http://dx.doi.org/10.5004/dwt.2009.86110.5004/dwt.2009.861Search in Google Scholar

[9] Madureira T.V., Rocha M.J., Cruzeiro C., Rodrigues I., Monteiro R.A.F., Rocha E., The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model, Environ. Toxicol. Pharmacol., 2012, 34, 34–45 http://dx.doi.org/10.1016/j.etap.2012.02.00710.1016/j.etap.2012.02.007Search in Google Scholar PubMed

[10] Bernet D., Schmidt H., Meier W., Burkhardt-Holm P., Wahli T., Histopathology in fish: proposal for a protocol to assess aquatic pollution, J. Fish Dis., 1999, 22, 25–34 http://dx.doi.org/10.1046/j.1365-2761.1999.00134.x10.1046/j.1365-2761.1999.00134.xSearch in Google Scholar

[11] Ashley P.J., Fish welfare: Current issues in aquaculture, Appl. Anim. Behav. Sci., 2007, 104, 199–235 http://dx.doi.org/10.1016/j.applanim.2006.09.00110.1016/j.applanim.2006.09.001Search in Google Scholar

[12] Segner H., Sundh H., Buchmann K., Douxfils J., Sundell K.S., Mathieu C., et al., Health of farmed fish: its relation to fish welfare and its utility as welfare indicator, Fish Physiol. Biochem., 2012, 38, 85–105 http://dx.doi.org/10.1007/s10695-011-9517-910.1007/s10695-011-9517-9Search in Google Scholar

[13] Rašković B., Poleksić V., Živić I., Spasić M., Histology of carp (Cyprinus carpio, L.) gills and pond water quality in semiintensive production, Bulg. J. Agric. Sci., 2010, 16, 253–262 Search in Google Scholar

[14] Skorić S., Rašković B., Poleksić V., Gačić Z., Lenhardt M., Scoring of the extent and intensity of carp (Cyprinus carpio) skin changes made by cormorants (Phalacrocorax carbo sinensis): relationship between morphometric and histological indices, Aquac. Int., 2012, 20, 525–535 http://dx.doi.org/10.1007/s10499-011-9483-310.1007/s10499-011-9483-3Search in Google Scholar

[15] Poleksić V., Vlahović M., Mitrović-Tutundžić V., Marković Z., Effects of environmental conditions on gill morphology of carp from the ‘Dubica’ farm during the 1998 rearing season, Acta Biol. Iugosl. (E Ichthyol.), 1999, 31, 43–52 Search in Google Scholar

[16] Poleksić V., Dulić-Stojanović Z., Marković Z., Gill structure of carp fingerlings from Baranda fish farm, Acta Biol. Iugosl. (E Ichthyol.), 2002, 34, 11–22 Search in Google Scholar

[17] Mommsen T., Vijayan M., Moon T., Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation, Rev. Fish Biol. Fish., 1999, 9, 211–268 http://dx.doi.org/10.1023/A:100892441872010.1023/A:1008924418720Search in Google Scholar

[18] Harper C., Wolf J.C., Morphologic effects of the stress response in fish, ILAR J., 2009, 50, 387–396 http://dx.doi.org/10.1093/ilar.50.4.38710.1093/ilar.50.4.387Search in Google Scholar

[19] Svobodová Z., Lloyd R., Máchová J., Vykusová B., Water quality and fish health, Food and Agriculture Organization of the United Nations, Rome, 1993 Search in Google Scholar

[20] Edwards E.A., Twomey K., Habitat suitability index models: common carp, U.S. Fish and Wildlife Service, Washington, DC, 1982 Search in Google Scholar

[21] Humason G.L., Animal tissue techniques, 3rd, W. H. Freeman, San Francisco, 1979 Search in Google Scholar

[22] Bechara J.A., Roux J.P., Ruiz Díaz F.J., Flores Quintana C.I., atLongoni de Meabe C.A., The effect of dietary protein level on pond water quality and feed utilization efficiency of pacú Piaractus mesopotamicus (Holmberg, 1887), Aquac. Res., 2005, 36, 546–553 http://dx.doi.org/10.1111/j.1365-2109.2005.01252.x10.1111/j.1365-2109.2005.01252.xSearch in Google Scholar

[23] Gross A., Boyd C.E., Wood C.W., Nitrogen transformations and balance in channel catfish ponds, Aquac. Eng., 2000, 24, 1–14 http://dx.doi.org/10.1016/S0144-8609(00)00062-510.1016/S0144-8609(00)00062-5Search in Google Scholar

[24] Kaushik S.J., Nutrient requirements, supply and utilization in the context of carp culture, Aquaculture, 1995, 129, 225–241 http://dx.doi.org/10.1016/0044-8486(94)00274-R10.1016/0044-8486(94)00274-RSearch in Google Scholar

[25] Driver P.D., Closs G.P., Koen T., The effects of size and density of carp (Cyprinus carpio L.) on water quality in an experimental pond, Arch. Hydrobiol., 2005, 163, 117–131 http://dx.doi.org/10.1127/0003-9136/2005/0163-011710.1127/0003-9136/2005/0163-0117Search in Google Scholar

[26] Lougheed V.L., Crosbie B., Chow-Fraser P., Predictions on the effect of common carp (Cyprinus carpio) exclusion on water quality, zooplankton, and submergent macrophytes in a Great Lakes wetland, Can. J. Fish. Aquat. Sci., 1998, 55, 1189–1197 http://dx.doi.org/10.1139/f97-31510.1139/f97-315Search in Google Scholar

[27] Marković Z., Common carp: rearing in fish ponds and cages [Šaran: gajenje u ribnjacima i kaveznim sistemima], Prof. dr Zoran Marković, Belgrade, 2010, (in Serbian) Search in Google Scholar

[28] Korwin-Kossakowski M., Growth and survival of carp (Cyprinus carpio L.) larvae in alkaline water, J. Fish Biol., 1992, 40, 981–982 http://dx.doi.org/10.1111/j.1095-8649.1992.tb02646.x10.1111/j.1095-8649.1992.tb02646.xSearch in Google Scholar

[29] Boyd C.E., Water quality management of pond fish culture, Elsevier, Amsterdam, The Netherlands, 1982 Search in Google Scholar

[30] Garg S.K., Bhatnagar A., Effect of varying closes of organic and inorganic fertilizers on plankton production and fish biomass in brackish water fish ponds, Aquac. Res., 1996, 27, 157–166 http://dx.doi.org/10.1111/j.1365-2109.1996.tb00980.x10.1111/j.1365-2109.1996.tb00980.xSearch in Google Scholar

[31] Chughtai M.I., Mahmood K., Semi-intensive carp culture in saline water-logged area: A multi-location study in Shorkot (district Jhang), Pakistan, Pak. J. Zool., 2012, 44, 1065–1072 Search in Google Scholar

[32] Boeck G., Nilsson G., Vlaeminck A., Blust R., Central monoaminergic responses to salinity and temperature rises in common carp, J. Exp. Biol., 1996, 199, 1605–1611 10.1242/jeb.199.7.1605Search in Google Scholar

[33] Altinok I., Grizzle J.M., Effects of low salinities on Flavobacterium columnare infection of euryhaline and freshwater stenohaline fish, J. Fish Dis., 2001, 24, 361–367 http://dx.doi.org/10.1046/j.1365-2761.2001.00306.x10.1046/j.1365-2761.2001.00306.xSearch in Google Scholar

[34] Zhou B.S., Wu R.S.S., Randall D.J., Lam P.K.S., Ip Y.K., Chew S.F., Metabolic adjustments in the common carp during prolonged hypoxia, J. Fish Biol., 2000, 57, 1160–1171 http://dx.doi.org/10.1111/j.1095-8649.2000.tb00478.x10.1111/j.1095-8649.2000.tb00478.xSearch in Google Scholar

[35] Vega M., Pardo R., Barrado E., Debán L., Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water Res., 1998, 32, 3581–3592 http://dx.doi.org/10.1016/S0043-1354(98)00138-910.1016/S0043-1354(98)00138-9Search in Google Scholar

[36] Holmstrup M., Bindesbøl A.-M., Oostingh G.J., Duschl A., Scheil V., Köhler H.-R., et al., Interactions between effects of environmental chemicals and natural stressors: A review, Sci. Total Environ., 2010, 408, 3746–3762 http://dx.doi.org/10.1016/j.scitotenv.2009.10.06710.1016/j.scitotenv.2009.10.067Search in Google Scholar

[37] Howe G.E., Marking L.L., Bills T.D., Rach J.J., Mayer F.L., Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus mykiss), Environ. Toxicol. Chem., 1994, 13, 51–66 10.1002/etc.5620130109Search in Google Scholar

[38] Randall D.J., Tsui T.K.N., Ammonia toxicity in fish, Mar. Pollut. Bull., 2002, 45, 17–23 http://dx.doi.org/10.1016/S0025-326X(02)00227-810.1016/S0025-326X(02)00227-8Search in Google Scholar

[39] Frances J., Nowak B.F., Allan G.L., Effects of ammonia on juvenile silver perch (Bidyanus bidyanus), Aquaculture, 2000, 183, 95–103 http://dx.doi.org/10.1016/S0044-8486(99)00286-010.1016/S0044-8486(99)00286-0Search in Google Scholar

[40] Lease H.M., Hansen J.A., Bergman H.L., Meyer J.S., Structural changes in gills of Lost River suckers exposed to elevated pH and ammonia concentrations, Comp. Biochem. Phys. C, 2003, 134, 491–500 10.1016/S1532-0456(03)00044-9Search in Google Scholar

[41] Benli A.Ç.K., Köksal G., Özkul A., Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology, Chemosphere, 2008, 72, 1355–1358 http://dx.doi.org/10.1016/j.chemosphere.2008.04.03710.1016/j.chemosphere.2008.04.037Search in Google Scholar

[42] Wilkie M.P., Wood C.M., Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry, Physiol. Zool., 1995, 379–401 10.1086/physzool.68.3.30163775Search in Google Scholar

[43] Wilkie M.P., Wright P.A., Iwama G.K., Wood C.M., The physiological adaptations of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4), Physiol. Zool., 1994, 355–380 10.1086/physzool.67.2.30163853Search in Google Scholar

[44] Wright P.A., Iwama G.K., Wood C.M., Ammonia and urea excretion in Lahontan cutthroat trout (Oncorhynchus clarki henshawi) adapted to the highly alkaline Pyramid Lake (pH 9.4), J. Exp. Biol., 1993, 175, 153–172 10.1242/jeb.175.1.153Search in Google Scholar

[45] Wang Y.S., Gonzalez R.J., Patrick M.L., Grosell M., Zhang C., Feng Q., et al., Unusual physiology of scale-less carp, Gymnocypris przewalskii, in Lake Qinghai: a high altitude alkaline saline lake, Comp. Biochem. Phys. A, 2003, 134, 409–421 http://dx.doi.org/10.1016/S1095-6433(02)00317-310.1016/S1095-6433(02)00317-3Search in Google Scholar

[46] Spencer P., Pollock R., Dubé M., Effects of unionized ammonia on histological, endocrine, and whole organism endpoints in slimy sculpin (Cottus cognatus), Aquat. Toxicol., 2008, 90, 300–309 http://dx.doi.org/10.1016/j.aquatox.2008.08.01710.1016/j.aquatox.2008.08.017Search in Google Scholar PubMed

[47] Sollid J., Nilsson G.E., Plasticity of respiratory structures — Adaptive remodeling of fish gills induced by ambient oxygen and temperature, Respir. Physiol. Neurobiol., 2006, 154, 241–251 http://dx.doi.org/10.1016/j.resp.2006.02.00610.1016/j.resp.2006.02.006Search in Google Scholar PubMed

[48] Karan V., Vitorović S., Tutundžić V., Poleksić V., Functional enzymes activity and gill histology of carp after copper sulfate exposure and recovery, Ecotoxicol. Environ. Saf., 1998, 40, 49–55 http://dx.doi.org/10.1006/eesa.1998.164110.1006/eesa.1998.1641Search in Google Scholar PubMed

[49] Nilsson G.E., Gill remodeling in fish — a new fashion or an ancient secret?, J. Exp. Biol., 2007, 210, 2403–2409 http://dx.doi.org/10.1242/jeb.00028110.1242/jeb.000281Search in Google Scholar PubMed

[50] Poleksić V., Mitrović-Tutundžić V., Fish gills as a monitor of sublethal and chronic effects of pollution, In: Muller R., Lloyd R. (Eds.), Sublethal and chronic toxic effects of pollutants on freshwater fish, Blackwell Scientific Publications Ltd., Oxford, 1994 Search in Google Scholar

[51] Fernandes M.N., Mazon A.F., Environmental pollution and fish gill morphology, In: Val L., Kapoor B.G. (Eds.), Fish Adaptations, Science Publishers, Enfield, 2003 Search in Google Scholar

[52] Mallatt J., Fish gill structural changes induced by toxicants and other irritants: a statistical review, Can. J. Fish. Aquat. Sci., 1985, 42, 630–648 http://dx.doi.org/10.1139/f85-08310.1139/f85-083Search in Google Scholar

[53] Booth J.H., The effects of oxygen supply, epinephrine, and acetylcholine on the distribution of blood flow in trout gills, J. Exp. Biol., 1979, 83, 31–39 10.1242/jeb.83.1.31Search in Google Scholar

[54] Schmidt H., Bernet D., Wahli T., Meier W., Burkhardt-Holm P., Active biomonitoring with brown trout and rainbow trout in diluted sewage plant effluents, J. Fish Biol., 1999, 54, 585–596 http://dx.doi.org/10.1111/j.1095-8649.1999.tb00637.x10.1111/j.1095-8649.1999.tb00637.xSearch in Google Scholar

[55] Koponen K., Myers M.S., Ritola O., Huuskonen S.E., Lindström-Seppä P., Histopathology of feral fish from a PCB-contaminated freshwater lake, AMBIO, 2001, 30, 122–126 10.1579/0044-7447-30.3.122Search in Google Scholar PubMed

[56] Reite O.B., Mast cells/eosinophilic granule cells of teleostean fish: a review focusing on staining properties and functional responses, Fish Shellfish Immunol., 1998, 8, 489–513 http://dx.doi.org/10.1006/fsim.1998.016210.1006/fsim.1998.0162Search in Google Scholar

[57] Silva A.G., Martinez C.B.R., Morphological changes in the kidney of a fish living in an urban stream, Environ. Toxicol. Pharmacol., 2007, 23, 185–192 http://dx.doi.org/10.1016/j.etap.2006.08.00910.1016/j.etap.2006.08.009Search in Google Scholar PubMed

[58] Reimschuessel R., A fish model of renal regeneration and development, ILAR J., 2001, 42, 285–291 http://dx.doi.org/10.1093/ilar.42.4.28510.1093/ilar.42.4.285Search in Google Scholar PubMed

Published Online: 2013-8-2
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-013-0220-y/html
Scroll to top button