Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 28, 2010

Photodynamic antimicrobial therapy

  • Lenka Ryskova EMAIL logo , Vladimir Buchta and Radovan Slezak
From the journal Open Life Sciences

Abstract

Photodynamic antimicrobial therapy (PACT) involves the utilisation of photosensitizers activated by exposure to visible light in order to eradicate microbes (this method has already been applied in photodynamic therapy of tumours). Photodynamic effect of the particular photosensitive substance (PS) is attributed to its ability to penetrate susceptible microorganisms, to absorb the light of certain wavelength, and to generate reactive cytotoxic oxygen products. The target microorganisms for photoinactivation are bacteria, fungi, viruses and protozoa. Photodynamic antimicrobial therapy is proposed as a potentially topical, non-invasive approach suitable for treatment of locally occurring infection. The fact that bacteria are becoming increasingly resistant to antibiotics and antiseptics has lead to an increased interest in the development of new alternative eradication methods, such as PACT. Research and development of photosensitive substances are aimed at finding effective antimicrobial substances, which would have a broad-spectrum potency.

[1] Wainwright M., Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28 http://dx.doi.org/10.1093/jac/42.1.1310.1093/jac/42.1.13Search in Google Scholar

[2] Konopka K., Goslinski T., Photodynamic therapy in dentistry, J. Dent. Res., 2007, 86, 694–707 http://dx.doi.org/10.1177/15440591070860080310.1177/154405910708600803Search in Google Scholar

[3] Maisch T., Bosl C., Szeimies R.M., Lehn N., Abels C., Photodynamic effects of novel XF porfyrin derivates on prokaryotic and eukaryotic cells, Antimicrob. Agents Chemother., 2005, 49, 1542–1552 http://dx.doi.org/10.1128/AAC.49.4.1542-1552.200510.1128/AAC.49.4.1542-1552.2005Search in Google Scholar

[4] Hamblin M.R., Hasan T., Photodynamic therapy: a new antimicrobial approach to infectious diseases?, Photochem. Photobiol. Sci., 2004, 3, 436–450 http://dx.doi.org/10.1039/b311900a10.1039/b311900aSearch in Google Scholar

[5] Jori G., Fabris C., Soncin M., Ferro S., Coppellotti O., Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481 http://dx.doi.org/10.1002/lsm.2036110.1002/lsm.20361Search in Google Scholar

[6] Jori G., Photodynamic therapy of microbial infections: state of the art and perspectives, J. Environ. Pathol. Toxicol. Oncol., 2006, 25, 505–519 10.1615/JEnvironPatholToxicolOncol.v25.i1-2.320Search in Google Scholar

[7] Luksiene Z., New approach to inactivation of harmful and pathogenic microorganisms by photosensitization, Food Technol. Biotechnol., 2005, 43, 411–418 Search in Google Scholar

[8] Castano A.P., Demidova T.N., Hamblin M.R., Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279–293 http://dx.doi.org/10.1016/S1572-1000(05)00007-410.1016/S1572-1000(05)00007-4Search in Google Scholar

[9] Garcia F.S., Tedesco A.C., Bentley M.V., Phthalocyanine dyes: importance and future directives for use in photodynamic therapy of cancer, Trends Photochem. Photobiol., 2003, 10, 77–82 Search in Google Scholar

[10] Mantareva V., Kussovski V., Angelov I., Borisova E., Avramov L., Schnurpfeil G., et al., Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms, Bioorg. Med. Chem., 2007, 15, 4829–4835 http://dx.doi.org/10.1016/j.bmc.2007.04.06910.1016/j.bmc.2007.04.069Search in Google Scholar

[11] Dostálová T., Jelínková H., Housová D., Sulc J., Nemec M., Dusková J., et al., Endodontic treatment with application of Er:YAG laser waveguide radiation disinfection, J. Clin. Laser Med. Surg., 2002, 20, 135–139 http://dx.doi.org/10.1089/10445470276009021810.1089/104454702760090218Search in Google Scholar

[12] Burns T., Wilson M., Pearson G.J., Killing of cariogenic bacteria by light from a gallium aluminium arsenide diode laser, J. Dent., 1994, 22, 273–278 http://dx.doi.org/10.1016/0300-5712(94)90056-610.1016/0300-5712(94)90056-6Search in Google Scholar

[13] Rovaldi C.R., Pievsky A., Sole N.A., Friden P.M., Rothstein P.M., Spacciapoli P., Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens in vitro, Antimicrob. Agents Chemother., 2000, 44, 3364–3367 http://dx.doi.org/10.1128/AAC.44.12.3364-3367.200010.1128/AAC.44.12.3364-3367.2000Search in Google Scholar PubMed PubMed Central

[14] Wilson M., Dobson J., Sarkar S., Sensitization of periodontopathogenic bacteria to killing by light from a low-power laser, Oral Microbiol. Immunol., 1993, 8, 182–187 http://dx.doi.org/10.1111/j.1399-302X.1993.tb00663.x10.1111/j.1399-302X.1993.tb00663.xSearch in Google Scholar

[15] Scalise I., Durantini E.N., Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn (II) pyridyloxyphthalocyanine derivatives, Bioorg. Med. Chem., 2005, 13, 3037–3045 http://dx.doi.org/10.1016/j.bmc.2005.01.06310.1016/j.bmc.2005.01.063Search in Google Scholar PubMed

[16] Komerik N., Wilson M., Factors influencing the susceptibility of Gram-negative bacteria to toluidine blue O-mediated lethal photosensitization, J. Appl. Microbiol., 2002, 92, 618–623 http://dx.doi.org/10.1046/j.1365-2672.2002.01567.x10.1046/j.1365-2672.2002.01567.xSearch in Google Scholar PubMed

[17] Minnock A., Vernon D.I., Schofield J., Griffiths J., Howard Parish J., Brown S.B., Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522–527 http://dx.doi.org/10.1128/AAC.44.3.522-527.200010.1128/AAC.44.3.522-527.2000Search in Google Scholar PubMed PubMed Central

[18] Soncin M., Fabris C., Busetti A., Dei D., Nistri D., Roncucci G., et al., Approaches to selectivity in the Zn (II)-phthalocyanine-photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819 http://dx.doi.org/10.1039/b206554a10.1039/B206554ASearch in Google Scholar PubMed

[19] Hamblin M.R., O’Donnell D.A., Murthy N., Rajagopalan K., Michaud N., Sherwood M.E., et al., Polycationic photosensitizer conjugates: effects of chain lenght and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951 http://dx.doi.org/10.1093/jac/dkf05310.1093/jac/dkf053Search in Google Scholar PubMed

[20] Wilson M., Burns T., Pratten J., Killing of Streptococcus sanguis in biofilms using a light-activated antimicrobial agents, J. Antimicrob. Chemother., 1996, 37, 377–381 http://dx.doi.org/10.1093/jac/37.2.37710.1093/jac/37.2.377Search in Google Scholar PubMed

[21] Senda N., Ito K., Sugano N., Moriya Y., Nanba K., Hirano Y., et al., Inhibitory effect of yellow He-Ne laser irradiation mediated by crystal violet solution on early plaque formation in human mouth, Lasers Med. Sci., 2000, 15, 174–180 http://dx.doi.org/10.1007/PL0001131410.1007/PL00011314Search in Google Scholar

[22] Demidova T.N., Hamblin M.R., Photodynamic therapy targeted to pathogens, Int. J. Immunopathol. Pharmacol., 2004, 17, 245–254 10.1177/039463200401700304Search in Google Scholar PubMed PubMed Central

[23] Lacey A.J., Philips D., The photosensitisation of Escherichia coli using disulphonated aluminium phthalocyanine, J. Photochem. Photobiol. A Chem., 2001, 142, 145–150 http://dx.doi.org/10.1016/S1010-6030(01)00508-110.1016/S1010-6030(01)00508-1Search in Google Scholar

[24] Wilson M., Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections, Photochem. Photobiol. Sci., 2004, 3, 412–418 http://dx.doi.org/10.1039/b211266c10.1039/b211266cSearch in Google Scholar

[25] Bertoloni G., Rossi F., Valduga G., Jori G., Ali H., van Lier J.E., Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 59, 149–155 http://dx.doi.org/10.1111/j.1574-6968.1990.tb03814.x10.1111/j.1574-6968.1990.tb03814.xSearch in Google Scholar

[26] Makela P.H., Hovi M., Saxén H., Valtonen M., Valtonen H., Salmonella, complement and mouse macrophages, Immunol. Lett., 1988, 19, 217–222 http://dx.doi.org/10.1016/0165-2478(88)90145-910.1016/0165-2478(88)90145-9Search in Google Scholar

[27] Hamblin M.R., Viveiros J., Yang C.H., Ahmadi A., Ganz R.A., Tolkoff M.J., Helicobacter pylori accumulates photoactive porphyrins and is killed by visible light, Antimicrob. Agents Chemother., 2005, 49, 2822–2827 http://dx.doi.org/10.1128/AAC.49.7.2822-2827.200510.1128/AAC.49.7.2822-2827.2005Search in Google Scholar

[28] Griffiths M.A., Wren B.W., Wilson M., Killing of methicillin-resistent Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent, J. Antimicrob. Chemother., 1997, 40, 873–876 http://dx.doi.org/10.1093/jac/40.6.87310.1093/jac/40.6.873Search in Google Scholar

[29] Tegos G.P., Anbe M., Yang C., Demidova T.N., Protease-stable polycationic photosensitizer conjugates between polyethyleneimine and chlorine (6) for broad-spectrum antimicrobial photoinactivation, Antimicrob. Agents Chemother., 2006, 50, 1402–1410 http://dx.doi.org/10.1128/AAC.50.4.1402-1410.200610.1128/AAC.50.4.1402-1410.2006Search in Google Scholar

[30] Minnock A., Vernon D.I., Schofield J., Griffiths J., Howard Parish J., Brown S.B., Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria, J. Photochem. Photobiol. B Biol., 1996, 32, 159–164 http://dx.doi.org/10.1016/1011-1344(95)07148-210.1016/1011-1344(95)07148-2Search in Google Scholar

[31] Tegos G.P., Hamblin M.R., Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug substrates pumps, Antimicrob. Agents Chemother., 2006, 50, 196–203 http://dx.doi.org/10.1128/AAC.50.1.196-203.200610.1128/AAC.50.1.196-203.2006Search in Google Scholar PubMed PubMed Central

[32] Chiti G., Dei D., Fantetti L., Roncucci G., In vitro photosensitizing efficacy of cationic phthalocyanine derivates against C. albicans: effect of serum albumins, J. Porphyrins Phthalocyanines, 2005, 9, 463–469 http://dx.doi.org/10.1142/S108842460500057510.1142/S1088424605000575Search in Google Scholar

[33] Donnelly R.F., McCarron P.A., Tunney M.M., Woolfson A.D., Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterization of a mucoadhesive patch containing toluidine blue O, J. Photochem. Photobiol. B Biol., 2007, 86, 59–69 http://dx.doi.org/10.1016/j.jphotobiol.2006.07.01110.1016/j.jphotobiol.2006.07.011Search in Google Scholar

[34] Friedberg J.S., Skema C., Baum E.D., Burdick J., Vinogradov S.A., Wilson D.F., et al., In vitro effects of photodynamic therapy on Aspergillus fumigatus, J. Antimicrob. Chemother., 2001, 48, 105–107 http://dx.doi.org/10.1093/jac/48.1.10510.1093/jac/48.1.105Search in Google Scholar

[35] Sujoy D., Debalina R., Bala K.K., Kwang-Poo C., Photodynamic sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phthalocyanine chloride for photolysis in vitro, Antimicrob. Agents Chemother., 2005, 49, 4474–4484 http://dx.doi.org/10.1128/AAC.49.11.4474-4484.200510.1128/AAC.49.11.4474-4484.2005Search in Google Scholar

[36] Ferro S., Coppellotti O., Roncucci G., Ben Amor T., Jori G., Photosensitized inactivation of Acanthamoeba palestinensis in the cystic stage, J. Appl. Microbiol., 2006, 101, 206–212 http://dx.doi.org/10.1111/j.1365-2672.2006.02893.x10.1111/j.1365-2672.2006.02893.xSearch in Google Scholar

[37] Lustigman S., Ben-Hur E., Photosensitized inactivation of Plasmodium falciparum in human red cells by phthalocyanines, Transfusion, 1996, 36, 543–546 http://dx.doi.org/10.1046/j.1537-2995.1996.36696269514.x10.1046/j.1537-2995.1996.36696269514.xSearch in Google Scholar

[38] Gad F., Zahra T., Hasan T., Hamblin M.R., Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria, Antimicrob. Agents Chemother., 2004, 48, 2173–2178 http://dx.doi.org/10.1128/AAC.48.6.2173-2178.200410.1128/AAC.48.6.2173-2178.2004Search in Google Scholar

[39] Bhatti M., MacRobert A., Henderson B., Shepherd P., Cridland J, Wilson M., Antibody-targeted lethal photosensitization of Porphyromonas gingivalis, Antimicrob. Agents Chemother., 2000, 44, 2615–2618 http://dx.doi.org/10.1128/AAC.44.10.2615-2618.200010.1128/AAC.44.10.2615-2618.2000Search in Google Scholar

[40] Votava M., Lékařská mikrobiologie obecná, Neptun, Brno, 2001, (in Czech) Search in Google Scholar

[41] Wood S., Nattress B., Kirkham J., Shore R., Brookes S., Griffiths J., et al., An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo, J. Photochem. Photobiol. B Biol., 1999, 50, 1–7 http://dx.doi.org/10.1016/S1011-1344(99)00056-110.1016/S1011-1344(99)00056-1Search in Google Scholar

[42] Demidova T.N., Hamblin M.R., Effect of cell-photosensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335 http://dx.doi.org/10.1128/AAC.49.6.2329-2335.200510.1128/AAC.49.6.2329-2335.2005Search in Google Scholar PubMed PubMed Central

[43] Gad F., Zahra T., Francis K.P., Hasan T., Hamblin M.R., Targeted photodynamic therapy of established soft-tissue infections in mice, Photochem. Photobiol. Sci., 2004, 3, 451–458 http://dx.doi.org/10.1039/b311901g10.1039/b311901gSearch in Google Scholar PubMed PubMed Central

[44] Lambrechts S.A., Demidova T.N., Aalders M.C., Hasan T., Hamblin M.R., Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice, Photochem. Photobiol. Sci., 2005, 4, 503–509 http://dx.doi.org/10.1039/b502125a10.1039/b502125aSearch in Google Scholar PubMed PubMed Central

[45] Komerik N., Nakanishi H., MacRobert A.J., Henderson B., In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model, Antimicrob. Agents Chemother., 2003, 47, 932–940 http://dx.doi.org/10.1128/AAC.47.3.932-940.200310.1128/AAC.47.3.932-940.2003Search in Google Scholar PubMed PubMed Central

[46] Teichert M.C., Jones J.W., Usacheva M.N., Biel M.A., Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2002, 93, 155–160 http://dx.doi.org/10.1067/moe.2002.12005110.1067/moe.2002.120051Search in Google Scholar PubMed

[47] Embleton M.L., Nair S.P., Heywood W., Menon D.C., Cookson B.D., Wilson M., Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus, Antimicrob. Agents Chemother., 2005, 49, 3690–3696 http://dx.doi.org/10.1128/AAC.49.9.3690-3696.200510.1128/AAC.49.9.3690-3696.2005Search in Google Scholar PubMed PubMed Central

[48] O’Neill J., Wilson M., Wainwright M., Comparative antistreptococcal activity of photobactericidal agents, J. Chemother., 2003, 15, 329–334 10.1179/joc.2003.15.4.329Search in Google Scholar PubMed

[49] Zanin I.C., Goncalves R.B., Brugnera A., Hope C.K., Pratten J., Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study, J. Antimicrob. Chemother., 2005, 56, 324–330 http://dx.doi.org/10.1093/jac/dki23210.1093/jac/dki232Search in Google Scholar PubMed

[50] Embleton M.L., Nair S.P., Cookson B.D., Wilson M., Selective lethal photosensitization of methicillin-resistant Staphylococcus aureus using an IgG-tin(IV) chlorin e6, J. Antimicrob. Chemother., 2002, 50, 857–864 http://dx.doi.org/10.1093/jac/dkf20910.1093/jac/dkf209Search in Google Scholar PubMed

Published Online: 2010-5-28
Published in Print: 2010-8-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-010-0032-2/html
Scroll to top button