Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2007

Antimicrobial peptides: an overview of a promising class of therapeutics

  • Andrea Giuliani EMAIL logo , Giovanna Pirri and Silvia Nicoletto
From the journal Open Life Sciences

Abstract

Antibiotic resistance is increasing at a rate that far exceeds the pace of new development of drugs. Antimicrobial peptides, both synthetic and from natural sources, have raised interest as pathogens become resistant against conventional antibiotics. Indeed, one of the major strengths of this class of molecules is their ability to kill multidrug-resistant bacteria. Antimicrobial peptides are relatively small (6 to 100 aminoacids), amphipathic molecules of variable length, sequence and structure with activity against a wide range of microorganisms including bacteria, protozoa, yeast, fungi, viruses and even tumor cells. They usually act through relatively non-specific mechanisms resulting in membranolytic activity but they can also stimulate the innate immune response. Several peptides have already entered pre-clinical and clinical trials for the treatment of catheter site infections, cystic fibrosis, acne, wound healing and patients undergoing stem cell transplantation. We review the advantages of these molecules in clinical applications, their disadvantages including their low in vivo stability, high costs of production and the strategies for their discovery and optimization.

[1] M. Zasloff: “Antimicrobial peptides of multicellular organisms”, Nature, Vol. 415, (2002), pp. 389–395. http://dx.doi.org/10.1038/415389a10.1038/415389aSearch in Google Scholar

[2] H.G. Boman: “Peptide antibiotics and their role in innate immunity”, Annu. Rev. Immunol., Vol. 13, (1995), pp. 61–92. http://dx.doi.org/10.1146/annurev.iy.13.040195.00042510.1146/annurev.iy.13.040195.000425Search in Google Scholar

[3] M. Wu, E. Maier, R. Benz and R.E.W. Hancock: “Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli”, Biochemistry, Vol. 38, (1999), pp. 7235–7242. http://dx.doi.org/10.1021/bi982629910.1021/bi9826299Search in Google Scholar

[4] R.M. Epand and H.J. Vogel: “Diversity of antimicrobial peptides and their mechanisms of action”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 11–28. http://dx.doi.org/10.1016/S0005-2736(99)00198-410.1016/S0005-2736(99)00198-4Search in Google Scholar

[5] W. van’t Hof, E.C.I. Veerman, E.J. Helmerhorst and A.V.N. Amerongen: “Antimicrobial peptides: properties and applicability”, Biol. Chem., Vol. 382, (2001), pp. 597–619. http://dx.doi.org/10.1515/BC.2001.07210.1515/BC.2001.072Search in Google Scholar

[6] R.E.W. Hancock and R. Lehrer: “Cationic peptides: a new source of antibiotics”, Trends Biotechnol., Vol. 16, (1998), pp. 82–88. http://dx.doi.org/10.1016/S0167-7799(97)01156-610.1016/S0167-7799(97)01156-6Search in Google Scholar

[7] F.V. Mohammad, M. Noorwala, V.U. Ahmad and B. Sener: “Bidesmosidic triterpenoidal saponins from the roots of Symphytum officinale”, Planta Med., Vol 61, (1995), p. 94. http://dx.doi.org/10.1055/s-2006-95801710.1055/s-2006-958017Search in Google Scholar PubMed

[8] S.B. Aley, M. Zimmerman, M. Hetsko, M.E. Selsted and F.D. Gillin: “Killing of Giardia lamblia by cryptdins and cationic neutrophil peptides”, Infect. Immun, Vol. 62, (1994), pp. 5397–5403. Search in Google Scholar

[9] M.G. Scott, H. Yan and R.E.W. Hancock: “Biological properties of structurally related α-helical cationic antimicrobial peptides”, Infect. Immun., Vol. 67, (1999), pp. 2005–2009. Search in Google Scholar

[10] M.A. Baker, W. L. Maloy, M. Zasloff and L.S. Jacob: “Anticancer efficacy of magainin 2 and analogue peptides”, Cancer Res., Vol. 53, (1993), pp. 3052–3057. Search in Google Scholar

[11] R.L. Gallo, M. Ono, T. Povsic, C. Page, E. Eriksson, M. Klagsbrun and M. Bernfield: “Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds”, Proc. Natl. Acad. Sci. U.S.A, Vol. 91, (1994), pp. 11035–11039. http://dx.doi.org/10.1073/pnas.91.23.1103510.1073/pnas.91.23.11035Search in Google Scholar PubMed PubMed Central

[12] T. Ganz: “Defensins and host defense”, Science, Vol. 286, (1999), pp. 420–421. http://dx.doi.org/10.1126/science.286.5439.42010.1126/science.286.5439.420Search in Google Scholar PubMed

[13] V. Dhoplea, A. Krukemeyera and A. Ramamoorthy: “The human beta-defensin-3, an antibacterial peptide with multiple biological functions”, Biochim. Biophys. Acta, (2006), Vol. 1758, pp. 1499–1512. http://dx.doi.org/10.1016/j.bbamem.2006.07.00710.1016/j.bbamem.2006.07.007Search in Google Scholar PubMed

[14] D. Yang, A. Biragyn, L.W. Kwak and J.J. Oppenheim: “Mammalian defensins in immunity: more than just microbicidal”, Trends Immun., Vol. 23, (2002), pp. 291–296. http://dx.doi.org/10.1016/S1471-4906(02)02246-910.1016/S1471-4906(02)02246-9Search in Google Scholar

[15] M.C. Territo, T. Ganz, M. E. Selsted and R. Lehrer: “Monocyte-chemotactic activity of defensins from human neutrophils”, J. Clin. Invest., Vol. 84, (1989), pp. 2017–2020. Search in Google Scholar

[16] H.J. Huang, C.R. Ross and F. Blecha: “Chemoattractant properties of PR-39, a neutrophil antibacterial peptide”, J. Leukoc. Biol., Vol. 61, (1997), pp. 624–629. Search in Google Scholar

[17] Y.V. Chaly, E.M. Paleolog, T.S. Kolesnikova, I.I. Tikhonov, E.V. Petratchenko and N.N. Voitenok: “Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells”, Eur. Cytokine Netw., Vol. 11, (2000), pp. 257–266. Search in Google Scholar

[18] S. Van Wetering, S.P. Mannesse-Lazeroms, J.H. Dijkman and P.S. Hiemstra: “Effect of neutrophil serine proteinases and defensins on lung epithelial cells: modulation of cytotoxicity and IL-8 production”, J. Leuok. Biol., Vol. 62, (1997), pp. 217–226. Search in Google Scholar

[19] D. Yang, O. Chertov, S.N. Bykovskaia, Q. Chen, M.J. Buffo, J. Shogan, M. Anderson, J.M. Schröder, J.M. Wang, O.M.Z. Howard and J.J. Oppenheim: “β-Defensins: Linking Innate and Adaptive Immunity Through Dendritic and T Cell CCR6”, Science, Vol. 286, (1999), pp. 525–528. http://dx.doi.org/10.1126/science.286.5439.52510.1126/science.286.5439.525Search in Google Scholar PubMed

[20] B.P.H.J. Thomma, B.P.A. Cammue and K. Thevissen: “Plant defensins”, Planta, Vol. 216, (2002), pp. 193–202. http://dx.doi.org/10.1007/s00425-002-0902-610.1007/s00425-002-0902-6Search in Google Scholar PubMed

[21] U.H. Durr, U.S. Sudheendra and A. Ramamoorthy: “LL-37, the only human member of the cathelicidin family of antimicrobial peptides”, Biochim. Biophys. Acta-Biomembranes, Vol. 1758, (2006), pp. 1408–1425. http://dx.doi.org/10.1016/j.bbamem.2006.03.03010.1016/j.bbamem.2006.03.030Search in Google Scholar PubMed

[22] M. Wachinger, A. Kleinschmidt, D. Winder, N. Von Pechmann, A. Ludvigsen, M. Neumann, R. Holle, B. Salmons, V. Erfle and R. Brack-Werner: “Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression”, J. Gen. Virol., Vol. 79, (1998), pp. 731–740. Search in Google Scholar

[23] Y. Chen, X. Xu, S. Hong, J. Chen, N. Liu, C. B. Underhill, K. Creswell and L. Zhang: “RGD-tachyplesin inhibits tumor growth”, Cancer Res., Vol. 61, (2001), pp. 2434–2438. Search in Google Scholar

[24] B.L. Kagan, M.E. Selsted, T. Ganz and R.I. Lehrer: “Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes”, Proc. Natl. Acad. Sci. U.S.A, Vol. 87, (1990), pp. 210–214. http://dx.doi.org/10.1073/pnas.87.1.21010.1073/pnas.87.1.210Search in Google Scholar PubMed PubMed Central

[25] A.J. Moore, D.A. Devine and M.C. Bibby: “Preliminary experimental anticancer activity of cecropins”, Pept. Res, Vol. 7, (1994), pp. 265–269. Search in Google Scholar

[26] H.J. Vogel, D.J. Schibli, W. Jing, E.M. Lohmeier-Vogel, R.F. Epand and R.M. Epand: “Towards a structure-function analysis of bovine lactoferricin and related tryptophan and arginine-containing peptides”, Biochem. Cell Biol., Vol. 80, (2002), pp. 49–63. http://dx.doi.org/10.1139/o01-21310.1139/o01-213Search in Google Scholar PubMed

[27] Y.C. Yoo, S. Watanabe, R. Watanabe, K. Hata, K. Shimazaki and I. Azuma: “Bovine lactoferrin and Lactoferricin inhibit tumor metastasis in mice”, Adv. Exp. Med. Biol., Vol. 443, (1998), pp. 285–291. Search in Google Scholar

[28] S.R. Dennison, M. Whittaker, F. Harris and D.A. Phoenix: “Anticancer α-Helical Peptides and Structure / Function Relationships Underpinning Their Interactions with Tumour Cell Membranes”, Curr. Protein Pept. Sci., Vol. 7, (2006), pp. 487–499. http://dx.doi.org/10.2174/13892030677902561110.2174/138920306779025611Search in Google Scholar PubMed

[29] H. Schröder-Borm, R. Bakalova and J. Andrä: “The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine”, FEBS Lett., Vol. 579, (2005), pp. 6128–6134. http://dx.doi.org/10.1016/j.febslet.2005.09.08410.1016/j.febslet.2005.09.084Search in Google Scholar PubMed

[30] N. Papo and Y. Shai: “Host defense peptides as new weapons in cancer treatment”, Cell. Mol. Life Sci., Vol. 62, (2005), pp. 784–790. http://dx.doi.org/10.1007/s00018-005-4560-210.1007/s00018-005-4560-2Search in Google Scholar PubMed

[31] J. Pardo, P. Perez-Galan, S. Gamen, I. Marzo, I. Monleon, A.A. Kaspar, S.A. Susin, G. Kroemer, A.M. Krensky, J. Naval and A. Anel: “A role of the mitochondrial apoptosis inducing factor in granulysin-induced apoptosis”, J. Immunol., Vol. 167, (2001), pp. 1222–1229. Search in Google Scholar

[32] T. Murakami, M. Niwa, F. Tokunaga, T. Miyata and S. Iwanaga: “Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes”, Chemotherapy, Vol. 37, (1991), pp. 327–334. http://dx.doi.org/10.1159/00023887510.1159/000238875Search in Google Scholar PubMed

[33] M. Masuda, H. Nakashima, T. Ueda, H. Naba, R. Ikoma, A. Otaka Y. Terakawa, H. Tamamura, T. Ibutaka, T. Murakami, Y. Koyanagi, M. Waki, A. Matsumoto, N. Yamamoto, S. Funakoshi and N. Fuji: “A novel anti-HIV synthetic peptide T-22 ([Tyr5,12,Lys7]-polyphemusin II)”, Biochem. Biophys. Res. Commun., Vol. 189, (1992), pp. 845–850. http://dx.doi.org/10.1016/0006-291X(92)92280-B10.1016/0006-291X(92)92280-BSearch in Google Scholar

[34] M. Morimoto, H. Mori, T. Otake, N. Ueba, N. Kunita, M. Niwa, T. Murakami and S. Iwanaga: “Inhibitory effect of tachyplesin I on the proliferation of human immunodeficiency virus in vitro”, Chemotherapy, Vol. 37, (1991), pp. 206–211. Search in Google Scholar

[35] T. Murakami, T. Nakajima, Y. Koyanagi, K. Tachibana, N. Fujii, H. Tamamura, N. Yoshida, M. Waki, A. Matsumoto, O. Yoshie, T. Kishimoto, N. Yamamoto and T. Nagasawa: “A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection”, J. Exp. Med., Vol. 186, (1997), pp. 1389–1393. http://dx.doi.org/10.1084/jem.186.8.138910.1084/jem.186.8.1389Search in Google Scholar

[36] R.F. Epand, A. Ramamoorthy and R.M. Epand: “Membrane Lipid Composition and the Interaction of Pardaxin: The Role of Cholesterol”, Protein Pept. Lett., Vol. 13, (2006), pp. 1–5. http://dx.doi.org/10.2174/09298660677450206310.2174/092986606774502063Search in Google Scholar

[37] F. Porcelli, B. Bethany, D.K. Lee, K.J. Hallock, A. Ramamoorthy and G. Veglia: “Structure and Orientation of Pardaxin Determined by NMR Experiments in Model Membranes”, J. Biol. Chem., Vol. 279, (2004), pp. 45815–45823. http://dx.doi.org/10.1074/jbc.M40545420010.1074/jbc.M405454200Search in Google Scholar

[38] K.J. Hallock, D.K. Lee, J. Omnaas, H.I. Mosberg and A. Ramamoorthy: “Membrane Composition Determines Pardaxin’s Mechanism of Lipid Bilayer Disruption”, Biophys. J., Vol. 83, (2002), pp. 1004–1013. Search in Google Scholar

[39] F. Porcelli, B.A. Buck-Koehntop, S. Thennarasu, A. Ramamoorthy and G. Veglia: “Structures of the Dimeric and Monomeric Variants of Magainin Antimicrobial Peptides (MSI-78 and MSI-594) in Micelles and Bilayers, Determined by NMR Spectroscopy”, Biochemistry, Vol. 45, (2006), pp. 5793–5799. http://dx.doi.org/10.1021/bi060181310.1021/bi0601813Search in Google Scholar

[40] A. Mecke, D.K. Lee, A. Ramamoorthy, B.G. Orr and M.M.B. Holl: “Membrane Thinning Due to Antimicrobial Peptide Binding: An Atomic Force Microscopy Study of MSI-78 in Lipid Bilayers”, Biophys. J., Vol. 89, (2005), pp. 4043–4050. http://dx.doi.org/10.1529/biophysj.105.06259610.1529/biophysj.105.062596Search in Google Scholar

[41] S. Thennarasu, D.K. Lee, A. Tan, U.P. Kari and A. Ramamoorthy: “Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843”, Biochim. Biophys. Acta, Vol. 1711, (2005), pp. 49–58. http://dx.doi.org/10.1016/j.bbamem.2005.02.01010.1016/j.bbamem.2005.02.010Search in Google Scholar

[42] A. Ramamoorthy, S. Thennarasu, A. Tan, D. Lee, C. Clayberger and A.M. Krensky: “Cell selectivity correlates with membrane-specific interactions: A case study on the antimicrobial peptide G15 derived from granulysin”, Biochim. Biophys. Acta, Vol. 1758, (2006), pp. 154–163. http://dx.doi.org/10.1016/j.bbamem.2006.02.01410.1016/j.bbamem.2006.02.014Search in Google Scholar

[43] A. Ramamoorthy, S. Thennarasu, A. Tan, K. Gottipati, S. Sreekumar, D.L. Heyl, F.Y.P. An and C.E. Shelburne: “Deletion of All Cysteines in Tachyplesin I Abolishes Hemolytic Activity and Retains Antimicrobial Activity and Lipopolysaccharide Selective Binding”, Biochemistry, Vol. 45, (2006), pp. 6529–6540. http://dx.doi.org/10.1021/bi052629q10.1021/bi052629qSearch in Google Scholar

[44] S. Thennarasu, D.K. Lee, A. Poon, K.E. Kawulka, J.C. Vederas and A. Ramamoorthy: “Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A”, Chem. Phys. Lipids. Vol. 137, (2005), pp. 38–51. http://dx.doi.org/10.1016/j.chemphyslip.2005.06.00310.1016/j.chemphyslip.2005.06.003Search in Google Scholar

[45] J.P. Powersand and R.E.W. Hancock: “The relationship between peptide structure and antibacterial activity”, Peptides, Vol. 24, (2003), pp. 1681–1691. http://dx.doi.org/10.1016/j.peptides.2003.08.02310.1016/j.peptides.2003.08.023Search in Google Scholar

[46] R. Yeaman and N.Y. Yount: “Mechanisms of antimicrobial peptide action and resistance”, Pharmacol. Rev., Vol. 55, (2003), pp. 27–55. http://dx.doi.org/10.1124/pr.55.1.210.1124/pr.55.1.2Search in Google Scholar

[47] K. Matsuzaki: “Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 1–10. http://dx.doi.org/10.1016/S0005-2736(99)00197-210.1016/S0005-2736(99)00197-2Search in Google Scholar

[48] R.E.W. Hancock and D.S. Chapple: “Peptide antibiotics”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1317–1323. Search in Google Scholar

[49] R.E.W. Hancock: “Peptide antibiotics”, Lancet, Vol. 349, (1997), pp. 418–422. http://dx.doi.org/10.1016/S0140-6736(97)80051-710.1016/S0140-6736(97)80051-7Search in Google Scholar

[50] J.M. Sanderson: “Peptide-lipids interactions: insights and perspectives”, Org. Biomol. Chem., Vol.3, (2005), pp. 201–212. http://dx.doi.org/10.1039/b415499a10.1039/B415499ASearch in Google Scholar

[51] Y. Shai and Z. Oren: “From “carpet”mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides”, Peptides, Vol. 22, (2001), pp. 1629–1641. http://dx.doi.org/10.1016/S0196-9781(01)00498-310.1016/S0196-9781(01)00498-3Search in Google Scholar

[52] N. Sitaram and R. Nagaraj: “Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity”, Biochim. Biophys Acta, Vol. 1462, (1999), pp. 29–54. http://dx.doi.org/10.1016/S0005-2736(99)00199-610.1016/S0005-2736(99)00199-6Search in Google Scholar

[53] E. Breukink and B. de Kruijff: “The lantibiotic nisin, a special case or not?”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 223–234. http://dx.doi.org/10.1016/S0005-2736(99)00208-410.1016/S0005-2736(99)00208-4Search in Google Scholar

[54] R.I. Lehrer and T. Ganz: “Cathelicidins: a family of endogenous antimicrobial peptides”, Curr. Opin. Hematol., Vol. 9, (2002), pp. 18–22. http://dx.doi.org/10.1097/00062752-200201000-0000410.1097/00062752-200201000-00004Search in Google Scholar

[55] M.S.P. Sansom: “Alamethicin and related peptaibols-model ion channels”, Eur. Biophys., Vol. 22, (1993), pp. 105–124. Search in Google Scholar

[56] L. Yang, T.A. Harroun, T.M. Weiss, L. Ding and H.W. Huang: “Barrel-stave model or toroidal model? A case study on melittin pores”, Biophys. J., (2001), Vol. 81, pp. 1475–1485. Search in Google Scholar

[57] L. Beven, O. Helluin, G. Molle, H. Duclohier and H. Wroblewski: “Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides”, Biochim. Biophys. Acta, Vol. 1421, (1999), pp. 53–63. http://dx.doi.org/10.1016/S0005-2736(99)00111-X10.1016/S0005-2736(99)00111-XSearch in Google Scholar

[58] L. Yang, T.M. Weiss, R.I. Lehrer and H.W. Huang: “Crystallization of antimicrobial pores in membranes: magainin and protegrin”, Biophys. J., Vol. 79, (2001), pp. 2002–2009. Search in Google Scholar

[59] K. Matsuzaki: “Magainins as paradigm for the mode of action of pore forming polypeptide”, Biochim. Biophys. Acta, Vol. 1376, (1998), pp. 391–400. Search in Google Scholar

[60] K. Matsuzaki, O. Murase, N. Fujii and K. Miyajima: “An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation”, Biochemistry, Vol. 35, (1996), pp. 11361–11368. http://dx.doi.org/10.1021/bi960016v10.1021/bi960016vSearch in Google Scholar

[61] B. Bechinger: “The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy”, Biochim. Biophys. Acta, Vol. 1462, (1999), pp. 157–183. http://dx.doi.org/10.1016/S0005-2736(99)00205-910.1016/S0005-2736(99)00205-9Search in Google Scholar

[62] R.A. Cruciani, J.L. Barker, S.R. Durell, G. Raghunathan, H.R. Guy, M. Zasloff and E.F Stanley: “Magainin 2: A natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes”, Eur. J. Pharmacol., Vol. 226, (1992), pp. 287–296. http://dx.doi.org/10.1016/0922-4106(92)90045-W10.1016/0922-4106(92)90045-WSearch in Google Scholar

[63] K.A. Brogden: “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?”, Nature Rev. Microb., Vol. 3, (2005), pp. 238–250. http://dx.doi.org/10.1038/nrmicro109810.1038/nrmicro1098Search in Google Scholar

[64] K.J. Hallock, D.K. Lee and A. Ramamoorthy: “MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain”, Biophys. J., Vol. 84, (2003), pp. 3052–3060. http://dx.doi.org/10.1016/S0006-3495(03)70031-910.1016/S0006-3495(03)70031-9Search in Google Scholar

[65] K.A. Henzler Wildman, D.K. Lee and A. Ramamoorthy: “Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37”, Biochemistry, Vol. 42, (2003), pp. 6545–6558. http://dx.doi.org/10.1021/bi027356310.1021/bi0273563Search in Google Scholar

[66] K.A. Henzler-Wildman, G.V. Martinez, M.F. Brown and A. Ramamoorthy: “Perturbation of the Hydrophobic Core of Lipid Bilayers by the Human Antimicrobial Peptide LL-37”, Biochemistry, Vol. 43, (2004), pp. 8459–8469. http://dx.doi.org/10.1021/bi036284s10.1021/bi036284sSearch in Google Scholar

[67] T. Ganz and R.I. Lehrer: “Defensins”, Pharmacol. Ther., Vol. 66, (1995), pp. 191–205. http://dx.doi.org/10.1016/0163-7258(94)00076-F10.1016/0163-7258(94)00076-FSearch in Google Scholar

[68] A. Rozek, C.L. Friedrich and R.E.W. Hancock: “Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles”, Biochemistry, Vol. 39, (2000), pp. 15765–15774. http://dx.doi.org/10.1021/bi000714m10.1021/bi000714mSearch in Google Scholar

[69] S. Vunnam, P. Juvvadi and R.B. Merrifield: “Synthesis and antibacterial action of cecropin and proline-arginine-rich peptides from pig intestine”, J. Pept. Res., Vol. 49, (1997), pp. 59–66. http://dx.doi.org/10.1111/j.1399-3011.1997.tb01121.x10.1111/j.1399-3011.1997.tb01121.xSearch in Google Scholar PubMed

[70] P. Casteels and P. Tempst: “Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity”, Biochem. Biophys. Res. Commun., Vol. 199, (1994), pp. 339–345. http://dx.doi.org/10.1006/bbrc.1994.123410.1006/bbrc.1994.1234Search in Google Scholar

[71] P. Bulet, L. Urge, S. Ohresser, C. Hetru and L. Otvös: “Enlarged scale chemical synthesis and range of activity of drosocin, an O-glycosylated antibacterial peptide of Drosophila”, Eur. J. Biochem., Vol. 238, (1996), pp. 64–69. http://dx.doi.org/10.1111/j.1432-1033.1996.0064q.x10.1111/j.1432-1033.1996.0064q.xSearch in Google Scholar

[72] Subbalakshmi and N. Sitaram: “Mechanism of antimicrobial action of indolicidin”, FEMS Microbiol. Lett., Vol. 160, (1998), pp. 91–96. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12896.x10.1111/j.1574-6968.1998.tb12896.xSearch in Google Scholar

[73] A. Carlsson, P. Engström, E.T. Palva and H. Bennich: “Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription”, Infect. Immun., Vol. 59, (1991), pp. 3040–3045. Search in Google Scholar

[74] J. Oh, Y. Cajal, E.M. Skowronska, S. Belkin, J. Chen, T.K. Van Dyk, R.M. Sasse and M.K. Jain: “Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli”, Biochim. Biophys. Acta, Vol. 1463, (2000), pp. 43–54. http://dx.doi.org/10.1016/S0005-2736(99)00177-710.1016/S0005-2736(99)00177-7Search in Google Scholar

[75] V. Cabiaux, B. Agerberth, J. Johansson, F. Homblé, E. Goormaghtigh and J. M. Ruysschaert: “Secondary structure and membrane interaction of PR-39, a Pro+Arg-rich antibacterial peptide”, Eur. J. Biochem., Vol. 224, (1994), pp. 1019–1027. http://dx.doi.org/10.1111/j.1432-1033.1994.01019.x10.1111/j.1432-1033.1994.01019.xSearch in Google Scholar PubMed

[76] H.G. Boman, B. Agerberth and A. Boman: “Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine”, Infect. Immun., Vol. 61, (1993), pp. 2978–2984. Search in Google Scholar

[77] C.B. Park, H. S. Kim and S.C. Kim: “Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell mem brane and inhibiting cellular functions”, Biochem. Biophys. Res. Commun., Vol. 244, (1998), pp. 253–257. http://dx.doi.org/10.1006/bbrc.1998.815910.1006/bbrc.1998.8159Search in Google Scholar PubMed

[78] B. Skerlavaj, D. Romeo and R. Gennaro: “Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins”, Infect. Immun., Vol. 58, (1990), pp. 3724–3730. Search in Google Scholar

[79] L. Otvos Jr., O. Insug, M.E. Rogers, P.J. Consolvo, B.A. Condie, S. Lovas, P. Bulet and M. Blaszczyk-Thurin: “Interaction between Heat Shock Proteins and Antimicrobial Peptides”, Biochemistry, Vol. 39, (2000), pp. 14150–14159. http://dx.doi.org/10.1021/bi001284310.1021/bi0012843Search in Google Scholar PubMed

[80] L.S. Chesnokova, S.V. Slepenkov and S.N. Witt: “The insect antimicrobial peptide, L-pyrrhocoricin, binds to and stimulates the ATPase activity of both wild-type and lidless DnaK”, FEBS Lett., Vol. 565, (2004), pp. 65–69. http://dx.doi.org/10.1016/j.febslet.2004.03.07510.1016/j.febslet.2004.03.075Search in Google Scholar PubMed

[81] O. Toke: “Antimicrobial Peptides: New Candidates in the Fight Against Bacterial Infections”, Pept. Sci., Vol. 80, (2005), pp. 717–735. Search in Google Scholar

[82] R.E.W. Hancock and H.G. Sahl: “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies”, Nature Biotechnol, Vol. 24, (2006), pp. 1551–1557. http://dx.doi.org/10.1038/nbt126710.1038/nbt1267Search in Google Scholar PubMed

[83] M. Zasloff: “The Commercial Development of the Antimicrobial Peptide Pexiganan”, In: K. Lohner (Ed.): Development of Novel Antimicrobial Agents: Emerging Strategies, Horizon Scientific Press, Wymondham, UK, 2001, pp. 261–270. Search in Google Scholar

[84] H.M. Lamb and L.R. Wiseman: “Pexiganan Acetate”, Drugs, Vol. 56, (1998), pp. 1047–1052. http://dx.doi.org/10.2165/00003495-199856060-0001110.2165/00003495-199856060-00011Search in Google Scholar PubMed

[85] A. Trotti, A. Garden, P. Warde, P. Symonds, C. Langer, R. Redman, T.F. Pajak, T.R. Fleming, M. Henke, J. Bourhis, D.I. Rosenthal, E. Junor, A. Cmelak, F. Sheehan, J. Pulliam, P. Devitt-Risse, H. Fuchs, M. Chambers, B. O’sullivan and K.K. Ang: “A multinational, randomized phase III trial of iseganan-HCl oral solution for reducing the severity of oral mucositis in patients receiving radiotherapy for head-and-neck malignancy”, Int. J. Radiat. Oncol. Biol. Phys., Vol. 58, (2004), pp. 674–681. http://dx.doi.org/10.1016/S0360-3016(03)01627-410.1016/S0360-3016(03)01627-4Search in Google Scholar

[86] Y.J. Gordon, E.G. Romanowski and A.M. McDermott: “A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs”, Curr. Eye Res., Vol. 30, (2005), pp. 505–515. http://dx.doi.org/10.1080/0271368059096863710.1080/02713680590968637Search in Google Scholar

[87] N. Markou, H. Apostolakos, C. Koumoudiou, M. Athanasiou, A. Koutsoukou, I. Alamanos and L. Gregorako: “Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients”, Crit. Care, Vol. 7, (2003), pp. 78–83. http://dx.doi.org/10.1186/cc235810.1186/cc2358Search in Google Scholar

[88] M.E. Falagas and S.K. Kasiakou: “Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections”, Clin. Infect. Dis., Vol. 40, (2005), pp. 1333–1341. http://dx.doi.org/10.1086/42932310.1086/429323Search in Google Scholar

[89] A. Kubo, C.S. Lunde and I. Kubo: “Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli”, Antimicrob. Agents. Chemother., Vol. 40, (1996), pp. 1438–1441. Search in Google Scholar

[90] S.P. Conway, M.N. Pond, A. Watson, C. Etherington, H.L. Robey and M.H. Goldman: “Intravenous colistin sulphometate in acute respiratory exacerbations in adult patients with cystic fibrosis”, Thorax, Vol. 52, (1997), pp. 987–993. http://dx.doi.org/10.1136/thx.52.11.98710.1136/thx.52.11.987Search in Google Scholar

[91] A. Pini, A. Giuliani, C. Falciani, Y. Runci, C. Ricci, B. Lelli, M. Malossi, P. Neri, G.M. Rossolini and L. Bracci: “Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification”, Antimicrob. Agents Chemother., Vol. 49, (2005), pp. 2665–2672. http://dx.doi.org/10.1128/AAC.49.7.2665-2672.200510.1128/AAC.49.7.2665-2672.2005Search in Google Scholar

[92] K.H. Mayo, J. Haseman, E. Ilyina and B. Gray: “Designed beta-sheet-forming peptide 33mers with potent human bactericidal/permeability increasing proteinlike bactericidal and endotoxin neutralizing activities”, Biochim. Biophys. Acta, Vol. 1425, (1998), pp. 81–92. Search in Google Scholar

[93] P.H. Mygind, R.L. Fischer, K.M. Schnorr, M.T. Hansen, C.P. Sönksen, S. Ludvigsen, D. Raventós, S. Buskov, B. Christensen, L. De Maria, O. Taboureau, D. Yaver, S.G. Elvig-Jørgensen, M.V. Sørensen, B.E. Christensen, S. Kjærulff, N. Frimodt-Moller, R.I. Lehrer, M. Zasloff and H.-H. Kristensen: “Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus”, Nature, Vol. 437, (2005), pp. 975–980. http://dx.doi.org/10.1038/nature0405110.1038/nature04051Search in Google Scholar

[94] M.M Welling, A. Paulusma-Annema, H.S. Balter, E.K. Pauwels and P.H. Nibbering: “Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations”, Eur. J. Nucl. Med., Vol. 24, (2004), pp. 292–301. Search in Google Scholar

[95] A. Giacometti, O. Cirioni, F. Barchiesi and G. Scalise: “In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics”, Diagn. Microbiol. Infect. Dis., Vol. 38, (2000), pp. 115–118. http://dx.doi.org/10.1016/S0732-8893(00)00175-910.1016/S0732-8893(00)00175-9Search in Google Scholar

[96] S.L. Haynie, G.A. Crum and B.A. Doele: “Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin”, Antimicrob. Agents Chemother. Vol. 39, (1995), pp. 301–307. Search in Google Scholar

[97] J.K. Ghosh, D. Shaool, P. Guillaud, L. Ciceron, D. Mazier, I. Kustanovich, Y. Shai and A. Mor: “Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis”, J. Biol. Chem., Vol. 272, (1997), pp. 31609–31616. http://dx.doi.org/10.1074/jbc.272.50.3160910.1074/jbc.272.50.31609Search in Google Scholar

[98] I. Ahmad, W.R. Perkins, D.M. Lupan, M.E. Selsted and A.S. Janoff: “Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity”, Biochim. Biophys. Acta, Vol. 1237, (1995), pp. 109–114. http://dx.doi.org/10.1016/0005-2736(95)00087-J10.1016/0005-2736(95)00087-JSearch in Google Scholar

[99] R. Raqib, P. Sarker, P. Bergman, G. Ara, M. Lindh, D.A. Sack, K.M. Nasirul Islam, G.H. Gudmundsson, J. Andersson and B. Agerberth: “Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic.”, Proc. Natl. Acad. Sci., Vol. 103, (2006), pp. 9178–9183. http://dx.doi.org/10.1073/pnas.060288810310.1073/pnas.0602888103Search in Google Scholar

[100] S. Kim, S.S Kim, Y.J. Bang, S.J. Kim and B.J. Lee: “In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines”, Peptides, Vol. 24, (2003), pp. 945–953. http://dx.doi.org/10.1016/S0196-9781(03)00194-310.1016/S0196-9781(03)00194-3Search in Google Scholar

[101] S.A. Johnstone, K. Gelmon, L.D. Mayer, R.E. Hancock and M.B. Bally: “In vitro characterization of the anticancer activity of membrane-active cationic peptides. I. Peptide-mediated cytotoxicity and peptide-enhanced cytotoxic activity of doxorubicin against wild-type and p-glycoprotein over-expressing tumor cell lines”, Anticancer Drug. Res., Vol. 15, (2000), pp. 151–160. Search in Google Scholar

[102] C. Leuschner and W. Hansel: “Membrane Disrupting Lytic Peptides for Cancer Treatments”, Curr. Pharm. Design, Vol. 10, (2004), pp. 2299–2310. http://dx.doi.org/10.2174/138161204338397110.2174/1381612043383971Search in Google Scholar

[103] D. Winder, W.H. Gunzburg, V. Erfle and B. Salmons: “Expression of antimicrobial peptides has an antitumour effect in human cells”, Biochem. Biophys. Res. Commun., Vol. 242, (1998) pp. 608–612. http://dx.doi.org/10.1006/bbrc.1997.801410.1006/bbrc.1997.8014Search in Google Scholar

[104] A.K. Marr, W.J. Gooderham and R.E.W. Hancock: “Antibacterial peptides for therapeutic use: obstacles and realistic outlook”, Curr. Opin. Pharmacol., Vol. 6, (2006), pp. 468–472. http://dx.doi.org/10.1016/j.coph.2006.04.00610.1016/j.coph.2006.04.006Search in Google Scholar

[105] C. Haught, G.D. Davis, R. Subramanian, K.W. Jackson and R.G. Harrison: “Recombinant Production and Purification of Novel Antisense Antimicrobial Peptide in Escherichia coli”, Biotech. Bioeng., Vol. 57, (1998), pp. 55–61. http://dx.doi.org/10.1002/(SICI)1097-0290(19980105)57:1<55::AID-BIT7>3.0.CO;2-U10.1002/(SICI)1097-0290(19980105)57:1<55::AID-BIT7>3.0.CO;2-USearch in Google Scholar

[106] E.A. Groisman: “The ins and outs of virulence gene expression: Mg2+ as a regulatory signal”, Bioessays, Vol. 20, (1998), pp. 96–101. http://dx.doi.org/10.1002/(SICI)1521-1878(199801)20:1<96::AID-BIES13>3.0.CO;2-310.1002/(SICI)1521-1878(199801)20:1<96::AID-BIES13>3.0.CO;2-3Search in Google Scholar

[107] J.S. Gunn, S.S. Ryan, J.C. Van Velkinburgh, R.K. Ernst and S.I. Miller: “Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium”, Infect. Immun., Vol. 68, (2000), pp. 6139–6146. http://dx.doi.org/10.1128/IAI.68.11.6139-6146.200010.1128/IAI.68.11.6139-6146.2000Search in Google Scholar

[108] C. Friedrich, M.G. Scott, N. Karunaratne, H. Yan and R.E.W. Hancock: “Salt-resistant alpha-helical cationic antimicrobial peptides”, Antimicrob. Agents Chemother., Vol. 43, (1999), pp. 1542–1548. Search in Google Scholar

[109] G.G. Perron, M. Zasloff and G. Bell: “Experimental evolution of resistance to an antimicrobial peptide”, Proc. Biol. Sci., Vol. 273, (2006), pp. 251–256. http://dx.doi.org/10.1098/rspb.2005.330110.1098/rspb.2005.3301Search in Google Scholar

[110] O. Sørensen, T. Bratt, A.H. Johnsen, M.T. Madsen and N. Borregaard: “The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma”, J. Biol. Chem., Vol. 274, (1999), pp. 22445–22451. http://dx.doi.org/10.1074/jbc.274.32.2244510.1074/jbc.274.32.22445Search in Google Scholar

[111] C. Adessi and C. Soto: “Converting a peptide into a drug: strategies to improve stability and bioavailability”, Curr. Med. Chem., Vol. 9, (2002), pp. 963–978. http://dx.doi.org/10.2174/092986702460673110.2174/0929867024606731Search in Google Scholar

[112] M. Goodman, C. Zapf and Y. Rew: “New reagents, reactions, and peptidomimetics for drug design”, Biopolymers, Vol. 60, (2001), pp. 229–245. http://dx.doi.org/10.1002/1097-0282(2001)60:3<229::AID-BIP10034>3.0.CO;2-P10.1002/1097-0282(2001)60:3<229::AID-BIP10034>3.0.CO;2-PSearch in Google Scholar

[113] A. Wiest, D. Grzegorski, B.W. Xu, C. Goulard, S. Rebuffat, D.J. Ebbole, B. Bodo and C. Kenerley: “Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase”, J. Biol. Chem., Vol. 277, (2002), pp. 20862–20868. http://dx.doi.org/10.1074/jbc.M20165420010.1074/jbc.M201654200Search in Google Scholar

[114] A. Banerjee, A. Pramanik, S. Bhattacharjya and P. Balaram: “Omega amino acids in peptide design: incorporation into helices”, Biopolymers, Vol. 39, (1996), pp. 769–777. http://dx.doi.org/10.1002/(SICI)1097-0282(199612)39:6<769::AID-BIP4>3.0.CO;2-T10.1002/(SICI)1097-0282(199612)39:6<769::AID-BIP4>3.0.CO;2-TSearch in Google Scholar

[115] J.M. Ostresh, S.E. Blondelle, B. Dörner and R.A. Houghten: “Generation and use of nonsupported-bound peptide and peptidomimetic combinatorial libraries”, Methods Enzymol., Vol. 267, (1996), pp. 220–234. http://dx.doi.org/10.1016/S0076-6879(96)67015-310.1016/S0076-6879(96)67015-3Search in Google Scholar

[116] A. Wessolowski, M. Bienert and M. Dathe: “Antimicrobial activity of arginineand tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization”, J. Pept. Res., Vol. 64, (2004), pp. 159–169. http://dx.doi.org/10.1111/j.1399-3011.2004.00182.x10.1111/j.1399-3011.2004.00182.xSearch in Google Scholar

[117] D. Gimenez, C. Andreu, M. del Olmo, T. Varea, D. Diaz and G. Asensio: “The introduction of fluorine atoms or trifluoromethyl groups in short cationic peptides enhances their antimicrobial activity”, Bioorg. Med. Chem., Vol. 14, (2006), pp. 6971–6978. http://dx.doi.org/10.1016/j.bmc.2006.06.02710.1016/j.bmc.2006.06.027Search in Google Scholar

[118] M. Dathe, J. Meyer, M. Beyermann, B. Maul, C. Hoischen and M. Bienert: “General aspects of peptide selectivity towards lipid bilayers and cell membranes studied by variation of the structural parameters of amphipathic helical model peptides”, Biochim. Biophys. Acta, Vol. 1558, (2002), pp. 171–186. http://dx.doi.org/10.1016/S0005-2736(01)00429-110.1016/S0005-2736(01)00429-1Search in Google Scholar

[119] Z. Oren, J. Ramesh, D. Avrahami, N. Suryaprakash, Y. Shai and R. Jelinek: “Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy”, Eur. J. Biochem., Vol. 269, (2002), pp. 3869–3880. http://dx.doi.org/10.1046/j.1432-1033.2002.03080.x10.1046/j.1432-1033.2002.03080.xSearch in Google Scholar

[120] S.-T Yang, S.Y. Shin, C.W. Lee, Y.-C. Kim, K.-S Hahm and J.I. Kim: “Selective cytotoxicity following Arg-to-Lys substitution in tritrpticin adopting a unique amphipathic turn structure”, FEBS Lett., Vol. 540, (2003), pp. 229–233. http://dx.doi.org/10.1016/S0014-5793(03)00266-710.1016/S0014-5793(03)00266-7Search in Google Scholar

[121] S.E. Blondelle and K. Lohner: “Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies”, Biopolymers, Vol. 55, (2000), pp. 74–87. http://dx.doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-S10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-SSearch in Google Scholar

[122] A. Malina and Y. Shai: “Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide”, Biochem. J., Vol. 390, (2005), pp. 695–702. Search in Google Scholar

[123] L. Otvos Jr., C. Snyder, B. Condie, P. Bulet and J.D. Wade: “Chimeric Antimicrobial Peptides Exhibit Multiple Modes of Action”, Int. J. Pept. Res. Ther., Vol. 11, (2005), pp. 29–42. http://dx.doi.org/10.1007/s10989-004-1719-x10.1007/s10989-004-1719-xSearch in Google Scholar

[124] R. Eckert, F. Qi, D.K. Yarbrough, J. He, M.H. Anderson and W. Shi: “Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp.”, Antimicrob. Agents Chemother., Vol. 50, (2006), pp. 1480–1488. http://dx.doi.org/10.1128/AAC.50.4.1480-1488.200610.1128/AAC.50.4.1480-1488.2006Search in Google Scholar

[125] C. Loose, K. Jensen, I. Rigoutsos and G. Stephanopoulos: “A linguistic model for the rational design of antimicrobial peptides”, Nature, Vol. 443, (2006), pp. 867–869. http://dx.doi.org/10.1038/nature0523310.1038/nature05233Search in Google Scholar

[126] I. Rigoutsos and A. Floratos: “Combinatorial pattern discovery in biological sequences: The TEIRESIAS algorithm”, Bioinformatics, Vol. 14, (1998), pp. 55–67. http://dx.doi.org/10.1093/bioinformatics/14.1.5510.1093/bioinformatics/14.1.55Search in Google Scholar

[127] K. Hilpert, M.R. Elliott, R. Volkmer-Engert, P. Henklein, O. Donini, Q. Zhou, D.F. Winkler and R.E.W. Hancock: “Sequence requirements and an optimization strategy for short antimicrobial peptides”, Chem. Biol., Vol. 13, (2006), pp. 1101–1107. http://dx.doi.org/10.1016/j.chembiol.2006.08.01410.1016/j.chembiol.2006.08.014Search in Google Scholar

[128] K. Hilpert, R. Volkmer-Engert, T. Walterand and R.E.W. Hancock: “High-throughput generation of small antibacterial peptides with improved activity”, Nature Biotechnol., Vol. 23, (2005), pp. 1008–1012. http://dx.doi.org/10.1038/nbt111310.1038/nbt1113Search in Google Scholar

[129] V. Nagarajan, N. Kaushik, B. Murali, C. Zhang, S. Lakhera, M.O. Elasri and Y. Deng: “A Fourier Transformation based method to mine peptide space for antimicrobial activity”, BMC Bioinformatics, Vol. 7, Suppl. 2, (2006). Search in Google Scholar

[130] A.D. McLachlan: “Analysis of periodic patterns in amino acid sequences: collagen”, Biopolymers, Vol. 16, (1977), pp. 1271–1297. http://dx.doi.org/10.1002/bip.1977.36016060910.1002/bip.1977.360160609Search in Google Scholar

[131] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya and R. Ramaswamy: “Prediction of probable genes by fourier analysis of genomic sequences”, Comput. Appl. Biosci., Vol. 13, (1997), pp. 263–270. Search in Google Scholar

[132] D.J. Christensen, E.B. Gottlin, R.E. Benson and P.T. Hamilton: “Phage display for target-based antibacterial drug discovery”, Drug Discov. Today., Vol. 6, (2001), pp. 721–727. http://dx.doi.org/10.1016/S1359-6446(01)01853-010.1016/S1359-6446(01)01853-0Search in Google Scholar

[133] F. Sanschagrin and R.C. Levesque: “A specific peptide inhibitor of the class B metallo-ß-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display”, J. Antimicrob. Chemother., Vol. 55, (2005), pp. 252–255. http://dx.doi.org/10.1093/jac/dkh55010.1093/jac/dkh550Search in Google Scholar

[134] R. Hyde-DeRuyscher, L.A. Paige, D.J. Christensen, N. Hyde-DeRuyscher, A. Lim, Z.L. Fredericks, J. Kranz, P. Gallant, J. Zhang, S.M. Rocklage, D.M. Fowlkes, P.A. Wendler and P.T. Hamilton: “Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries”, Chem. Biol., Vol. 7, (2000), pp. 17–25. http://dx.doi.org/10.1016/S1074-5521(00)00062-410.1016/S1074-5521(00)00062-4Search in Google Scholar

[135] H. Grøn and R. Hyde-DeRuyscher: “Peptides as tools in drug discovery”, Curr. Opin. Drug Disc., Vol. 3, (2000), pp. 636–645. Search in Google Scholar

[136] C. Galanos, O. Luderitz, E.T. Rietschel and O. Westphal: “Newer aspects of the chemistry and biology of bacterial lipopolysaccharides with special reference to their lipid A component”, Int. Rev. Biochem. Vol. 14, (1977), pp. 239–334. Search in Google Scholar

[137] C.J. Thomas, S. Sharma, G. Kumar, S.S. Visweswariah and A. Surolia: “Biopanning of endotoxin-specific phage displayed peptides”, Biochem. Biophys. Res. Commun., Vol. 307, (2003), pp. 133–138. http://dx.doi.org/10.1016/S0006-291X(03)01136-710.1016/S0006-291X(03)01136-7Search in Google Scholar

[138] J. Tao, P. Wendler, G. Connelly, A. Lim, J. Zhang, M. King, T. Li, J.A. Silverman, P.R. Schimmel and F.P. Tally: “Drug target validation: lethal infection blocked by inducible peptide”, Proc. Natl. Acad. Sci. U.S.A., Vol. 97, (2000), pp. 783–786. http://dx.doi.org/10.1073/pnas.97.2.78310.1073/pnas.97.2.783Search in Google Scholar

[139] J.P. Tam: “Synthetic peptide vaccine design: synthesis and properties of a highdensity multiple antigenic peptide system”, Proc. Natl. Acad. Sci. U.S.A., Vol. 85, (1988), pp. 5409–5413. http://dx.doi.org/10.1073/pnas.85.15.540910.1073/pnas.85.15.5409Search in Google Scholar

[140] C.C. Lee, J.A. MacKay, J.M.J. Fréchet and F.C. Szoka: “Designing dendrimers for biological applications”, Nature Biotechnol., Vol. 23, (2005), pp. 1517–1526. http://dx.doi.org/10.1038/nbt117110.1038/nbt1171Search in Google Scholar

[141] L. Bracci, L. Lozzi, A. Pini, B. Lelli, C. Falciani, N. Niccolai, A. Bernini, A. Spreafico, P. Soldani and P. Neri: “A branched peptide mimotope of the nicotinic receptor binding site is a potent synthetic antidote against the snake neurotoxin alpha-bungarotoxin”, Biochemistry, Vol. 41, (2002), pp. 10194–10199. http://dx.doi.org/10.1021/bi025602510.1021/bi0256025Search in Google Scholar

[142] L. Lozzi, B. Lelli, Y. Runci, S. Scali, A. Bernini, C. Falciani, A. Pini, N. Niccolai, P. Neri and L. Bracci: “Rational design and molecular diversity for the construction of anti-alpha-bungarotoxin antidotes with high affinity and in vivo efficiency”, Chem. Biol., Vol. 10, (2003), pp. 411–417. http://dx.doi.org/10.1016/S1074-5521(03)00094-210.1016/S1074-5521(03)00094-2Search in Google Scholar

[143] L. Bracci, C. Falciani, B. Lelli, L. Lozzi, Y. Runci, A. Pini, M. G. De Montis, A. Tagliamonte, and P. Neri: “Synthetic peptides in the form of dendrimers become resistant to protease activity”, J. Biol. Chem., Vol. 278, (2003), 46590–46595. http://dx.doi.org/10.1074/jbc.M30861520010.1074/jbc.M308615200Search in Google Scholar PubMed

[144] J.P. Tam, Y.A. Lu and J.L. Yang: “Antimicrobial dendrimeric peptides”, Eur. J. Biochem., Vol. 269, (2002), pp. 923–932. http://dx.doi.org/10.1046/j.0014-2956.2001.02728.x10.1046/j.0014-2956.2001.02728.xSearch in Google Scholar PubMed

[145] J. Janiszewska, J. Swieton, A.W. Lipkowski and Z. Urbanczyk-Lipkowska: “Low molecular mass peptide dendrimers that express antimicrobial properties”, Bioorg. Med. Chem. Lett., Vol. 13, (2003), pp. 3711–3713. http://dx.doi.org/10.1016/j.bmcl.2003.08.00910.1016/j.bmcl.2003.08.009Search in Google Scholar PubMed

Published Online: 2007-3-1
Published in Print: 2007-3-1

© 2007 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11535-007-0010-5/html
Scroll to top button