Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 15, 2014

Einstein equation at singularities

  • Ovidiu-Cristinel Stoica EMAIL logo
From the journal Open Physics

Abstract

Einstein’s equation is rewritten in an equivalent form, which remains valid at the singularities in some major cases. These cases include the Schwarzschild singularity, the Friedmann-Lemaître-Robertson-Walker Big Bang singularity, isotropic singularities, and a class of warped product singularities. This equation is constructed in terms of the Ricci part of the Riemann curvature (as the Kulkarni-Nomizu product between Einstein’s equation and the metric tensor).

[1] C. Corda, H. J. M. Cuesta, Mod. Phys. Lett. A 25, 2423 (2010) http://dx.doi.org/10.1142/S021773231003363310.1142/S0217732310033633Search in Google Scholar

[2] R. Penrose, Phys. Rev. Lett. 14, 57 (1965) http://dx.doi.org/10.1103/PhysRevLett.14.5710.1103/PhysRevLett.14.57Search in Google Scholar

[3] S. W. Hawking, P. Roy. Soc. A-Math. Phy. 294, 511 (1966) http://dx.doi.org/10.1098/rspa.1966.022110.1098/rspa.1966.0221Search in Google Scholar

[4] S. W. Hawking, P. Roy. Soc. A-Math. Phy. 295, 490 (1966) http://dx.doi.org/10.1098/rspa.1966.025510.1098/rspa.1966.0255Search in Google Scholar

[5] S. W. Hawking, P. Roy. Soc. A-Math. Phy. 300, 187 (1967) http://dx.doi.org/10.1098/rspa.1967.016410.1098/rspa.1967.0164Search in Google Scholar

[6] S. W. Hawking, R. W. Penrose, Proc. Roy. Soc. London Ser. A 314, 529 (1970) http://dx.doi.org/10.1098/rspa.1970.002110.1098/rspa.1970.0021Search in Google Scholar

[7] S. W. Hawking, G. F. R. Ellis, The Large Scale Structure of Space Time, (Cambridge University Press, 1995) Search in Google Scholar

[8] O. C. Stoica, Ann. of Phys. 338, 186 (2013) http://dx.doi.org/10.1016/j.aop.2013.08.00210.1016/j.aop.2013.08.002Search in Google Scholar

[9] I. M. Singer, J. A. Thorpe. The curvature of 4-dimensional Einstein spaces. In Global Analysis (Papers in Honor of K. Kodaira) Search in Google Scholar

[10] Arthur L. Besse, Einstein Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, (Berlin, New York, Springer-Verlag, 1987) Search in Google Scholar

[11] S. Gallot, D. Hullin, J. Lafontaine, Riemannian Geometry, (Springer-Verlag, Berlin, New York, 3rd edition, 2004) http://dx.doi.org/10.1007/978-3-642-18855-810.1007/978-3-642-18855-8Search in Google Scholar

[12] O. C. Stoica, arXiv:math.DG/1105.0201, To appear in Int. J. Geom. Methods Mod. Phys., (2011) Search in Google Scholar

[13] O. C. Stoica, arXiv:math.DG/1105.3404, (2011) Search in Google Scholar

[14] O. C. Stoica, An. St. Univ. Ovidius Constanta 20, 213 (2012) 10.2478/v10309-012-0050-3Search in Google Scholar

[15] K. P. Tod, Class. Quant. Grav. 4, 1457 (1987) http://dx.doi.org/10.1088/0264-9381/4/5/03810.1088/0264-9381/4/5/038Search in Google Scholar

[16] K. P. Tod, Class. Quant. Grav. 7, L13 (1990) http://dx.doi.org/10.1088/0264-9381/7/1/00410.1088/0264-9381/7/1/004Search in Google Scholar

[17] K. P. Tod, Class. Quant. Grav. 8, L77 (1991) http://dx.doi.org/10.1088/0264-9381/8/4/00210.1088/0264-9381/8/4/002Search in Google Scholar

[18] K. P. Tod, Rend. Sem. Mat. Univ. Politec. Torino 50, 69 (1992) Search in Google Scholar

[19] K. P. Tod, The Conformal Structure of Space-Time, 123 (2002) Search in Google Scholar

[20] K. P. Tod, Class. Quant. Grav. 20, 521 (2003) http://dx.doi.org/10.1088/0264-9381/20/3/30910.1088/0264-9381/20/3/309Search in Google Scholar

[21] C. M. Claudel, K. P. Newman, P. Roy. Soc. A-Math. Phy. 454, 1073 (1998) http://dx.doi.org/10.1098/rspa.1998.019710.1098/rspa.1998.0197Search in Google Scholar

[22] K. Anguige, K. P. Tod, Ann. of Phys. 276, 257 (1999) http://dx.doi.org/10.1006/aphy.1999.594610.1006/aphy.1999.5946Search in Google Scholar

[23] K. Anguige, K. P. Tod, Ann. of Phys. 276, 294 (1999) http://dx.doi.org/10.1006/aphy.1999.594710.1006/aphy.1999.5947Search in Google Scholar

[24] B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity. Number 103 in Pure Appl. Math., (Academic Press, New York-London, 1983) Search in Google Scholar

[25] O. C. Stoica, Commun. Theor. Phys. 58, 613 (2012) http://dx.doi.org/10.1088/0253-6102/58/4/2810.1088/0253-6102/58/4/28Search in Google Scholar

[26] A. S. Eddington, Nature 113, 192 (1924) http://dx.doi.org/10.1038/113192a010.1038/113192a0Search in Google Scholar

[27] D. Finkelstein, Phys. Rev. 110, 965 (1958) http://dx.doi.org/10.1103/PhysRev.110.96510.1103/PhysRev.110.965Search in Google Scholar

[28] O. C. Stoica, Eur. Phys. J. Plus 127, 1 (2012) http://dx.doi.org/10.1140/epjp/i2012-12083-110.1140/epjp/i2012-12083-1Search in Google Scholar

[29] O. C. Stoica, Phys. Scr. 85, 055004 (2012) http://dx.doi.org/10.1088/0031-8949/85/05/05500410.1088/0031-8949/85/05/055004Search in Google Scholar

[30] O. C. Stoica, arXiv:gr-qc/1111.7082, To appear in U.P.B. Sci. Bull., Series A, (2013) Search in Google Scholar

[31] O. C. Stoica, The International Conference of Differential Geometry and Dynamical Systems, arXiv:grqc/1112.4508, (2013) Search in Google Scholar

Published Online: 2014-2-15
Published in Print: 2014-2-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-014-0427-1/html
Scroll to top button