Skip to main content
Log in

Numerical solution of the Maxwell equations in time-varying media using Magnus expansion

  • Research Article
  • Published:
Central European Journal of Mathematics

Abstract

For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagrinovskiĭ K.A., Godunov S.K., Difference schemes for multidimensional problems, Dokl. Akad. Nauk. SSSR, 1957, 115, 431–433 (in Russian)

    MathSciNet  Google Scholar 

  2. Botchev M., Faragó I., Havasi Á., Testing weighted splitting schemes on a one-column transport-chemistry model, International Journal of Environment and Pollution, 2004, 22(1–2), 3–16

    Google Scholar 

  3. Botchev M.A., Faragó I., Horváth R., Application of operator splitting to the Maxwell equations including a source term, Appl. Numer. Math., 2009, 59(3–4), 522–541

    Article  MathSciNet  MATH  Google Scholar 

  4. Csomós P., Faragó I., Error analysis of the numerical solution of split differential equations, Math. Comput. Modelling, 2008, 48(7–8), 1090–1106

    Article  MathSciNet  MATH  Google Scholar 

  5. Csomós P., Faragó I., Havasi Á., Weighted sequential splittings and their analysis, Comput. Math. Appl., 2005, 50(7), 1017–1031

    Article  MathSciNet  MATH  Google Scholar 

  6. Faragó I., Havasi Á., Horváth R., On the order of operator splitting methods for non-autonomous systems (submitted)

  7. Fante R., Transmission of electromagnetic waves into time-varying media, IEEE Trans. Antennas and Propagation, 1971, 19(3), 417–424

    Article  Google Scholar 

  8. Felsen L., Whitman G., Wave propagation in time-varying media, IEEE Trans. Antennas and Propagation, 1970, 18(2), 242–253

    Article  Google Scholar 

  9. Harfoush F.A., Taflove A., Scattering of electromagnetic waves by a material half-space with a time-varying conductivity, IEEE Trans. Antennas and Propagation, 1991, 39(7), 898–906

    Article  Google Scholar 

  10. Horváth R., Uniform treatment of numerical time-integrations of the Maxwell equations, In: Proceedings Scientific Computing in Electrical Engineering, Eindhoven, June 23–28, 2002, Math. Ind., 4, Springer, Berlin, 2003, 231–239

    Google Scholar 

  11. Hundsdorfer W., Verwer J., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Ser. Comput. Math., 33, Springer, Berlin, 2003

    MATH  Google Scholar 

  12. Karlsfeld S., Oteo J.A., Recursive generation of higher-order terms in the Magnus expansion, Phys. Rev. A, 1989, 39(7), 3270–3273

    Article  Google Scholar 

  13. Lee J.H., Kalluri D.K., Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma, IEEE Trans. Antennas and Propagation, 1999, 47(7), 1146–1151

    Article  Google Scholar 

  14. Magnus W., On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 1954, 7(4), 649–673

    Article  MathSciNet  MATH  Google Scholar 

  15. Marchuk G.I., Splitting Methods, Nauka, Moscow, 1988 (in Russian)

    Google Scholar 

  16. Moan P.C., Oteo J.A., Ros J., On the existence of the exponential solution of linear differential systems, J. Phys. A, 1999, 32(27), 5133–5139

    Article  MathSciNet  MATH  Google Scholar 

  17. Strang G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 1968, 5(3), 506–517

    Article  MathSciNet  MATH  Google Scholar 

  18. Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed., Artech House, Boston, 2005

    Google Scholar 

  19. Taylor C.D., Lam D.-H., Shumpert T.H., Electromagnetic scattering in time varying, inhomogeneous media, Interaction Notes, 41, Mississippi State University, State College, Mississippi, 1968

    Google Scholar 

  20. Vorgul I., On Maxwell’s equations in non-stationary media, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2008, 366(1871), 1781–1788

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu R., Gao B.-Q., The analysis of 3 dB microstrip directional coupler in time-varying media by FDTD method, In: 2nd International Conference on Microwave and Millimeter Wave Technology, 2000, ICMMT, Beijing, 2000, 375–378

  22. Yee K.S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307

    Article  MATH  Google Scholar 

  23. Zhang Y., Gao B.-Q., Propagation of cylindrical waves in media of time-dependent permittivity, Chinese Phys. Lett., 2005, 22(2), 446–449

    Article  Google Scholar 

  24. Zlatev Z., Dimov I., Computational and Numerical Challenges in Environmental Modelling, Stud. Comput. Math., 13, Elsevier, Amsterdam, 2006

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Faragó.

About this article

Cite this article

Faragó, I., Havasi, Á. & Horváth, R. Numerical solution of the Maxwell equations in time-varying media using Magnus expansion. centr.eur.j.math. 10, 137–149 (2012). https://doi.org/10.2478/s11533-011-0074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11533-011-0074-3

MSC

Keywords

Navigation