Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 27, 2013

Investigation of SOFC material properties for plant-level modeling

  • Jakub Kupecki EMAIL logo , Jarosław Milewski and Janusz Jewulski
From the journal Open Chemistry

Abstract

This article describes results of a recent study of SOFC (Solid Oxide Fuel Cell) material properties using a numerical tool. The created model was validated against experimental data collected for two different solid oxide fuel cells. With focus on ionic and electronic conductivities, temperature influence was investigated. Results are presented, compared with available data, and discussed. Model of a micro-CHP (Combined Heat and Power) unit based on a SOFC stack was used for evaluation of system performance with different cells. On-site generated bio-syngas was considered as a fuel fed for the unit. The overall system efficiency was analyzed using an Aspen HYSYS modeling environment. Properties of two generic electrolyte materials were implemented in the models for evaluation of a co-generative unit operation. Electrical and overall efficiencies of systems based on those cells were compared and differences were observed. Micro-scale power units with fuel cells are a promising technology for highly efficient distributed cogeneration. As it was concluded, selection of a proper cell is crucial to assure high system efficiency.

[1] Directive 2004/8/EC of the European Parliament and of the Council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market (European Commission, Strasbourg, 2004) Search in Google Scholar

[2] L. Barelli, G. Bidini, F. Gallorini, A. Ottaviano, Int. J. Hydrogen Energy36, 3206 (2011) 10.1016/j.ijhydene.2010.11.079Search in Google Scholar

[3] J. Kupecki, J. Jewulski, K. Badyda, Rynek Energii 97, 157 (2011) (in Polish) Search in Google Scholar

[4] E.I. Zolias, N. Lymberopoulos (Eds.), Autonomous Power Systems (Springer-Verlag, London, 2008) Search in Google Scholar

[5] T. Tanaka, Y. Inui, A. Urata, T. Kanno, Energy Conversion and Management 48, 1491 (2007) http://dx.doi.org/10.1016/j.enconman.2006.11.01910.1016/j.enconman.2006.11.019Search in Google Scholar

[6] M. Iwata, T. Hikosaka, M. Morita, T. Iwanari, K. Ito, K. Onda et al., Solid State Ionics 132, 297 (2000) http://dx.doi.org/10.1016/S0167-2738(00)00645-710.1016/S0167-2738(00)00645-7Search in Google Scholar

[7] K.J. Kattke, R.J. Braun, A.M. Colclasure, G. Goldin G, Journal of Power Sources 196, 3790 (2011) http://dx.doi.org/10.1016/j.jpowsour.2010.12.07010.1016/j.jpowsour.2010.12.070Search in Google Scholar

[8] J. Milewski, A. Miller, J. Salacinski, Int. J. Hydrogen Energy 32, 687 (2007) http://dx.doi.org/10.1016/j.ijhydene.2006.08.00710.1016/j.ijhydene.2006.08.007Search in Google Scholar

[9] Y. Jiang, A.V. Virkar, J. of Electrochemical Soc. Vol 148 (2001) 10.1149/1.1375166Search in Google Scholar

[10] US Department of Energy, National Energy Technology Laboratory, Fuel Cell Handbook, 7th edition (EG&G Technical Services Inc., Morgantown, 2004) Search in Google Scholar

[11] J. Kupecki, Integrated Gasification SOFC Hybrid Power System Modeling: Novel numerical approach to modeling of advanced power systems, (VDM Verlag Dr. Muller, Saarbrucken, 2010) Search in Google Scholar

[12] H. Yokokawa, Annual Review of Materials Research 33, 581 (2003) http://dx.doi.org/10.1146/annurev.matsci.33.022802.09385610.1146/annurev.matsci.33.022802.093856Search in Google Scholar

[13] R. O’Hayre, S.W. Cha, W. Colella, F. Prinz, Fuel cell fundamentals (Wiley, New York, 2005) Search in Google Scholar

[14] J. Milewski, J. Lewandowski, Archives of Thermodynamics 30, 4 (2009) Search in Google Scholar

[15] J. Staniforth, R.M. Ormerod, Ionics 9(5–6), 336 (2003) http://dx.doi.org/10.1007/BF0237658310.1007/BF02376583Search in Google Scholar

[16] A. Wojcik, H. Middleton, I, Damopoulos, J. Van Heerle, J. of Power Sources 118(1–2), 342 (2003) http://dx.doi.org/10.1016/S0378-7753(03)00083-110.1016/S0378-7753(03)00083-1Search in Google Scholar

[17] E.P. Murray, S.J. Harris, H. Jen, J. of Electrochemical Soc. 149(9), A1127 (2002) http://dx.doi.org/10.1149/1.149648410.1149/1.1496484Search in Google Scholar

[18] J. Kupecki, J. Jewulski, J. Milewski, In: C. Aydinalp (Ed.), Clean Energy for Better Environment (InTech, Rijeka, 2012) 53 Search in Google Scholar

[19] A. Virkar, J. Power Sources 147, 8 (2005) http://dx.doi.org/10.1016/j.jpowsour.2005.01.03810.1016/j.jpowsour.2005.01.038Search in Google Scholar

[20] K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, T. Kawada, J. Mizusaki, J. Sfeir, J. Van Herle, Solid State Ionics 175, 341 (2004) http://dx.doi.org/10.1016/j.ssi.2004.01.06610.1016/j.ssi.2004.01.066Search in Google Scholar

[21] T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994) http://dx.doi.org/10.1021/ja00088a01610.1021/ja00088a016Search in Google Scholar

[22] C.B. Choudhary, H.S. Maiti, E.C. Subbarao, Solid Electrolytes and Their Applications (Plenum Press, New York, 1980) Search in Google Scholar

[23] J. Cheng, P. Shi, H. Zhong, B. Wang, Key Eng. Mater. 336–338, 444 (2007) http://dx.doi.org/10.4028/www.scientific.net/KEM.336-338.44410.4028/www.scientific.net/KEM.336-338.444Search in Google Scholar

[24] K. Kawamura, K. Watanabe, T. Hiramatsu, A. Kaimai, Y. Nigara, T. Kawada, J. Mizusaki, Solid State Ionics 144, 11 (2001) http://dx.doi.org/10.1016/S0167-2738(01)00892-X10.1016/S0167-2738(01)00892-XSearch in Google Scholar

[25] Q. Li, V. Thangadurai, Fuel Cells 9, 684 (2009) http://dx.doi.org/10.1002/fuce.20090004410.1002/fuce.200900044Search in Google Scholar

[26] J. Van Herle, D. Seneviratne, A. J. McEvoy, J. Eur. Ceram. Soc. 19, 837 (1999) http://dx.doi.org/10.1016/S0955-2219(98)00327-610.1016/S0955-2219(98)00327-6Search in Google Scholar

[27] J. Milewski, Fuel Cells 12, 709 (2012) http://dx.doi.org/10.1002/fuce.20110015010.1002/fuce.201100150Search in Google Scholar

[28] J. Milewski, K. Swirski, M. Santarelli, P. Leone (Eds.), Advanced Methods of Solid Oxide Fuel Cell Modeling (Springer-Verlag, London Ltd., 2011) 10.1007/978-0-85729-262-9Search in Google Scholar

[29] H.C. Park, A.V. Virkar, J. Power Sources 186, 133 (2009) http://dx.doi.org/10.1016/j.jpowsour.2008.09.08010.1016/j.jpowsour.2008.09.080Search in Google Scholar

[30] J. Ding, J. Liu, Solid State Ionic 179, 1246 (2008) http://dx.doi.org/10.1016/j.ssi.2008.01.09410.1016/j.ssi.2008.01.094Search in Google Scholar

[31] T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi, Y. Takita, Chem. Commun. 13, 1227 (1999) http://dx.doi.org/10.1039/a902899d10.1039/a902899dSearch in Google Scholar

[32] J. Milewski, A. Miller, A. Dmowski, P. Biczel, Arch. Thermodynamics 30, 25 (2009) Search in Google Scholar

[33] L. Nikonowicz, J. Milewski, J. Power Technologies 91, 82 (2011) Search in Google Scholar

[34] A. Pramuanjaroenkij, S. Kakac, X.Y. Zhou, Int. J. Hydrogen Energy 33, 2547 (2008) http://dx.doi.org/10.1016/j.ijhydene.2008.02.04310.1016/j.ijhydene.2008.02.043Search in Google Scholar

[35] Y. Xie, X. Xue, Int. J. Hydrogen Energy 34, 6882 (2009) http://dx.doi.org/10.1016/j.ijhydene.2009.06.03410.1016/j.ijhydene.2009.06.034Search in Google Scholar

Published Online: 2013-2-27
Published in Print: 2013-5-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0211-x/html
Scroll to top button