Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 21, 2009

Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization

  • T. Ozkaya EMAIL logo , A. Baykal , Y. Koseoğlu and H. Kavas
From the journal Open Chemistry

Abstract

Without any surfactant, antiferromagnetic Co3O4 nanoparticles were synthesized successfully for the first time by means of an oxidation-reduction method with cobalt sulfate as starting material, which was oxidized to cobalt salt by NaNO3 after alkalinizing with NaOH. Morphological, structural, spectroscopic and magnetic characterization of the product were done by SEM, TEM, XRD, and VSM, respectively. The average crystallite size (on the base of line profile fitting method), D and σ, is estimated as 30 ± 6 nm. Some anomalous magnetic properties and their enhanced effect have been observed in Co3O4 antiferromagnetic nanocrystallites, including a bias field, coercivity, permanent magnetic moments and an open loop. These phenomena are attributed to the unidirectional anisotropy which is caused by the exchange coupling between AFM and FM layers, the existence of the spin glass like surface spins of Co3O4 nanoparticles due to size effects and surface-area effect.

[1] G. Busca, F. Trifiro, A. Vaccari, Langmuir 6, 1440 (1990) http://dx.doi.org/10.1021/la00099a00210.1021/la00099a002Search in Google Scholar

[2] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000) http://dx.doi.org/10.1038/3503504510.1038/35035045Search in Google Scholar

[3] Z. Yuan, F. Huang, C. Feng, J. Sun, Y. Zhou, Mater. Chem. Phys. 79, 1 (2003) http://dx.doi.org/10.1016/S0254-0584(02)00442-X10.1016/S0254-0584(02)00442-XSearch in Google Scholar

[4] M. Ando, T. Kobayashi, S. Lijima, M.J. Haruta, Mater. Chem. 7, 1779 (1997) http://dx.doi.org/10.1039/a700125h10.1039/a700125hSearch in Google Scholar

[5] T. Maruyama, S.J. Arai, J. Electrochem. Soc. 143, 1383 (1996) http://dx.doi.org/10.1149/1.183664610.1149/1.1836646Search in Google Scholar

[6] S. Weichel, P.J. Moller, Surf. Sci. 399, 219 (1998) http://dx.doi.org/10.1016/S0039-6028(97)00820-010.1016/S0039-6028(97)00820-0Search in Google Scholar

[7] K. Kamata, Y. Lu, Y. Xia, J. Am. Chem. Soc. 125, 2384 (2003) http://dx.doi.org/10.1021/ja029284910.1021/ja0292849Search in Google Scholar PubMed

[8] Y. Wang, L. Cai, Y. Xia, Adv. Mater. 17, 473 (2005) http://dx.doi.org/10.1002/adma.20040141610.1002/adma.200401416Search in Google Scholar

[9] M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 7(9), 1779 (1997) http://dx.doi.org/10.1039/a700125h10.1039/a700125hSearch in Google Scholar

[10] F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, J. Electrochem. Soc. 143, 1532 (1996) http://dx.doi.org/10.1149/1.183667510.1149/1.1836675Search in Google Scholar

[11] T. Sugimoto, E. Matijevic, J. Inorg. Nucl. Chem. 41, 165 (1979) http://dx.doi.org/10.1016/0022-1902(79)80506-010.1016/0022-1902(79)80506-0Search in Google Scholar

[12] Y.J. Mergler, J. Hoebink, B.E. Nieuwenhuys, J. Catal. 167, 305 (1997) http://dx.doi.org/10.1006/jcat.1997.159910.1006/jcat.1997.1599Search in Google Scholar

[13] H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, H. Tsuchida, Catal. Today 29, 53 (1996) http://dx.doi.org/10.1016/0920-5861(95)00263-410.1016/0920-5861(95)00263-4Search in Google Scholar

[14] A.S.K. Sinha, V. Shankar, J. Chem. Eng. Biochem. Eng. 52, 115 (1993) http://dx.doi.org/10.1016/0923-0467(93)85024-P10.1016/0923-0467(93)85024-PSearch in Google Scholar

[15] C. Mocuta, A. Barbier, G. Renaud, Appl. Surf. Sci. 56, 162 (2002) 10.1016/S0169-4332(00)00170-7Search in Google Scholar

[16] F. Svegl, B. Orel, I. Grabec-Svegl, V. Kaucic, Electrochim. Acta 45, 4359 (2000) http://dx.doi.org/10.1016/S0013-4686(00)00543-010.1016/S0013-4686(00)00543-0Search in Google Scholar

[17] M.E. Baydi, G. Poillerat, J.-L. Rehspringer, J.L. Gautier, J.-F. Koenig, P. Chartier, J. Solid State Chem. 109, 281 (1994) http://dx.doi.org/10.1006/jssc.1994.110510.1006/jssc.1994.1105Search in Google Scholar

[18] Y.H. Ni, X.W. Ge, Z.C. Zhang, H.R. Liu, Z.L. Zhu, Q. Ye, Mater. Res. Bull. 36, 2383 (2001) http://dx.doi.org/10.1016/S0025-5408(01)00739-510.1016/S0025-5408(01)00739-5Search in Google Scholar

[19] C. Pirovano, S. Trasatti, J. Electroanal. Chem. 180(1–2), 171 (1984) http://dx.doi.org/10.1016/0368-1874(84)83578-910.1016/0368-1874(84)83578-9Search in Google Scholar

[20] S. Sakamoto, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 80, 267 (1997) http://dx.doi.org/10.1111/j.1151-2916.1997.tb02824.x10.1111/j.1151-2916.1997.tb02824.xSearch in Google Scholar

[21] A.U. Mane, K. Shalini, A. Wohlfart, A. Devi, S.A. Shivashankar, J. Cryst. Growth 240, 157 (2002) http://dx.doi.org/10.1016/S0022-0248(02)00860-610.1016/S0022-0248(02)00860-6Search in Google Scholar

[22] K. Shalini, A.U. Mane, S.A. Shivashankar, M. Rajeswari, S. Choopun, J. Cryst. Growth 231, 242 (2001) http://dx.doi.org/10.1016/S0022-0248(01)01493-210.1016/S0022-0248(01)01493-2Search in Google Scholar

[23] M. Burriel, G. Garcia, J. Santiso, A. Abrutis, Z. Saltyte, A. Figueras, Chem. Vapor Depos. 11, 106 (2005) http://dx.doi.org/10.1002/cvde.20040632010.1002/cvde.200406320Search in Google Scholar

[24] R.N. Singh, J.F. Koenig, G. Poillerat, P. Chartier, J. Electrochem. Soc. 137, 1480 (1990) Search in Google Scholar

[25] M. Hamdani, J.F. Koenig, P. Chartier, J. Appl. Electrochem. 18, 568 (1988) http://dx.doi.org/10.1007/BF0102225210.1007/BF01022252Search in Google Scholar

[26] R. Xu, H.C. Zeng, J. Phys. Chem. B 107, 926 (2003) http://dx.doi.org/10.1021/jp021094x10.1021/jp021094xSearch in Google Scholar

[27] B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997) http://dx.doi.org/10.1021/cm970268y10.1021/cm970268ySearch in Google Scholar

[28] T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu, M.S. Toprak, Physica B 403, 3760 (2008). http://dx.doi.org/10.1016/j.physb.2008.07.00210.1016/j.physb.2008.07.002Search in Google Scholar

[29] W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu, Materials Letters 60, 2998 (2006) http://dx.doi.org/10.1016/j.matlet.2006.02.03210.1016/j.matlet.2006.02.032Search in Google Scholar

[30] T. Ozkaya, “Synthesis and Characterization of M3O4 ((m = Fe, Co, Mn) Magnetic nanoparticles”, Master Thesis, Fatih University, İstanbul-Turkey, July (2008) Search in Google Scholar

[31] P.H. Refait, J.M.R. Genin, Corros. Sci. 34, 797 (1993) http://dx.doi.org/10.1016/0010-938X(93)90101-L10.1016/0010-938X(93)90101-LSearch in Google Scholar

[32] A.A. Olowe, J.M.R. Genin, Corros. Sci. 32, 965 (1991) http://dx.doi.org/10.1016/0010-938X(91)90016-I10.1016/0010-938X(91)90016-ISearch in Google Scholar

[33] T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Applied Surface Science 253, 204 (2006) http://dx.doi.org/10.1016/j.apsusc.2006.05.08910.1016/j.apsusc.2006.05.089Search in Google Scholar

[34] R. Pielaszek, Analytical expression for diffraction line profile for polydispersive powders, Appl. Crystallography (Proceedings of the XIX Conference, Krakow, Poland, 2003) 43 10.1142/9789812702913_0009Search in Google Scholar

[35] H.K. Lin, H.C. Chiu, H.C. Tsai, Catal. Lett. 88, 169 (2003) http://dx.doi.org/10.1023/A:102401382298610.1023/A:1024013822986Search in Google Scholar

[36] St.G. Christokova, M. Stayonava, M. Georgieva, D. Mehandjiev, Mater. Chem. Phys. 60, 39 (1999) http://dx.doi.org/10.1016/S0254-0584(99)00053-X10.1016/S0254-0584(99)00053-XSearch in Google Scholar

[37] Y. Chen, Y. Zhang, S. Fu, Mater. Lett. 61, 701 (2007) http://dx.doi.org/10.1016/j.matlet.2006.05.04610.1016/j.matlet.2006.05.046Search in Google Scholar

[38] F. Kurtulu§, H. Güler, Inorganic Materials 41(5), 564 (2005) Search in Google Scholar

[39] W.L. Roth, J. Phys. Chem. Solids 25, 1 (1964) http://dx.doi.org/10.1016/0022-3697(64)90156-810.1016/0022-3697(64)90156-8Search in Google Scholar

[40] T. Ambrose, C.L. Chien, Phys. Rev. Lett. 76, 1743 (1996) http://dx.doi.org/10.1103/PhysRevLett.76.174310.1103/PhysRevLett.76.1743Search in Google Scholar PubMed

[41] R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.139310.1103/PhysRevLett.79.1393Search in Google Scholar

[42] L. Neel, in: C. Dewitt, B. Dreyfus, and P.D. de Gennes (Eds.), Low Temperature Physics (Gordon and Beach, New York, 1962) 413 Search in Google Scholar

[43] C. Nethravathi, S. Sen, N. Ravishankar, M. Rajamathi, C. Pietzonka, Bernd Harbrecht, J. Phys. Chem. B 109, 11468 (2005) http://dx.doi.org/10.1021/jp050725v10.1021/jp050725vSearch in Google Scholar PubMed

[44] E.L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, F. Schuth, Nano Letters 6, 2977 (2006) http://dx.doi.org/10.1021/nl060528n10.1021/nl060528nSearch in Google Scholar PubMed

[45] A. Salah, J. Makhlouf, J. Magn. Magn. Mater. 246, 184 (2002) http://dx.doi.org/10.1016/S0304-8853(02)00050-110.1016/S0304-8853(02)00050-1Search in Google Scholar

Published Online: 2009-6-21
Published in Print: 2009-9-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0012-4/html
Scroll to top button