Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 23, 2010

Chemical conjugation of biomacromolecules: A mini-review

  • Pavol Farkaš EMAIL logo and Slavomír Bystrický
From the journal Chemical Papers

Abstract

Biological studies showed that assembles of biomolecules can dramatically change their physiological effectiveness. Covalent coupling of different types of biomolecules leads to novel biomacromolecules of different properties. Generally, bioconjugate chemistry opens a new dimension in biomedical and biotechnology research. In this review, some important chemical methods of bioconjugates preparation used in the practice are described. Proteins and saccharides modification methods and employment of linkers used to achieve new functionalities are discussed. Common bioconjugation methods are emphasized and novel methods from recent years are described. Except in chemistry, benefits and limits of the studied methods are outlined.

[1] Albericio, F. (2004). Developments in peptide and amide synthesis. Current Opinion in Chemical Biology, 8, 211–221. DOI: 10.1016/j.cbpa.2004.03.002. http://dx.doi.org/10.1016/j.cbpa.2004.03.00210.1016/j.cbpa.2004.03.002Search in Google Scholar

[2] Amir-Kroll, H., Nussbaum, G., & Cohen, I. R. (2003). Proteins and their derived peptides as carriers in a conjugate vaccine for Streptococcus pneumoniae: Self-heat shock protein 60 and tetanus toxoid. The Journal of Immunology, 170, 6165–6171. 10.4049/jimmunol.170.12.6165Search in Google Scholar

[3] Anderson, P., Pichichero, M. E., & Insel, R. A. (1985). Immunogens consisting of oligosaccharides from the capsule of Haemophilus influenzae type b coupled to diphtheria toxoid or CRM197. The Journal of Clinical Investigation, 76, 52–59. DOI: 10.1172/JCI111976. http://dx.doi.org/10.1172/JCI11197610.1172/JCI111976Search in Google Scholar

[4] Baskin, J. M., Prescher, J. A., Laughlin, S. T., Agard, N. J., Chang, P. V., Miller, I, A., Lo, A., Codelli, J. A., & Bertozzi, C. R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences, 104, 16793–16797. DOI: 10.1073/pnas.0707090104. http://dx.doi.org/10.1073/pnas.070709010410.1073/pnas.0707090104Search in Google Scholar

[5] Bauminger, S., & Wilcheck, M. (1980). The use of carbodiimides in the preparation of immunizing conjugates. Methods in Enzymology, 70, 151–159. http://dx.doi.org/10.1016/S0076-6879(80)70046-010.1016/S0076-6879(80)70046-0Search in Google Scholar

[6] Berkin, A., Coxon, B., & Pozsgay, V. (2002). Towards a synthetic glycoconjugate vaccine against Neisseria meningitidis A. Chemistry — A European Journal, 8, 4424–4433. DOI: 10.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-1. http://dx.doi.org/10.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-110.1002/1521-3765(20021004)8:19<4424::AID-CHEM4424>3.0.CO;2-1Search in Google Scholar

[7] Bernstein, M. A., & Hall, L. D. (1980). A general synthesis of model glycoproteins: coupling of alkenyl glycosides to proteins, using reductive ozonolysis followed by reductive amination with sodium cyanoborohydride. Carbohydrate Research, 78, C1–C3. DOI: 10.1016/S0008-6215(00)83676-9. http://dx.doi.org/10.1016/S0008-6215(00)83676-910.1016/S0008-6215(00)83676-9Search in Google Scholar

[8] Bode, J. W., Fox, R. M., & Baucom, K. D. (2006). Chemoselective amide ligations by decarboxylative condensations of N-alkylhydroxylamines and α-ketoacids. Angewandte Chemie International Edition, 45, 1248–1252. DOI: 10.1002/anie.200503991. http://dx.doi.org/10.1002/anie.20050399110.1002/anie.200503991Search in Google Scholar

[9] Boratyńsky, J., & Roy, R. (1998). High temperature conjugation of proteins with carbohydrates. Glycoconjugate Journal, 15, 131–138. DOI: 10.1023/A:1007067513242. http://dx.doi.org/10.1023/A:100706751324210.1023/A:1007067513242Search in Google Scholar

[10] Bulpitt, P., & Aeschlimann, D. (1999). New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. Journal of Biomedical Materials Research Part A, 47, 152–169. DOI: 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I. http://dx.doi.org/10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-I10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.0.CO;2-ISearch in Google Scholar

[11] Bystrický, S., Machová, E., Bartek, P., Kolarova, N., & Kogan, G. (2000). Conjugation of yeast mannans with protein employing cyanopyridinium agent (CDAP). an effective route of antifungal vaccine preparation. Glycoconjugate Journal, 17, 677–680. DOI: 10.1023/A:1011002118819. http://dx.doi.org/10.1023/A:101100211881910.1023/A:1011002118819Search in Google Scholar

[12] Canalle, L. A., Löwik, D. W. P. M., & Hest, J. C. M. (2010). Polypeptide-polymer bioconjugates. Chemical Society Reviews, 39, 329–353, DOI: 10.1039/b807871h. http://dx.doi.org/10.1039/b807871h10.1039/B807871HSearch in Google Scholar PubMed

[13] Chan, T. R., Hilgraf, R., Sharpless, K. B., & Fokin, V. V. (2004). Polytriazoles as copper(I)-stabilizing ligands in catalysis. Organic Letters, 6, 2853–2855. DOI: 10.1021/ol0493094. http://dx.doi.org/10.1021/ol049309410.1021/ol0493094Search in Google Scholar PubMed

[14] Dalpathado, D. S., Jiang, H., Kater, M. A., & Desaire, H. (2005). Reductive amination of carbohydrates using NaBH(OAc)3. Analytical and Bioanalytical Chemistry, 381, 1130–1137. DOI: 10.1007/s00216-004-3028-9. http://dx.doi.org/10.1007/s00216-004-3028-910.1007/s00216-004-3028-9Search in Google Scholar PubMed

[15] Dawson, P. E., Muir, T. W., Clark-Lewis, I., & Kent, S. B. (1994). Synthesis of proteins by native chemical ligation. Science, 266, 776–779. DOI: 10.1126/science.7973629. http://dx.doi.org/10.1126/science.797362910.1126/science.7973629Search in Google Scholar PubMed

[16] Ďurana, R., Lacík, I., Paulovičová, E., & Bystický, S. (2006). Functionalization of mannans from pathogenic yeasts by different means of oxidations—preparation of precursors for conjugation reactions with respect to preservation of immunological properties. Carbohydrate Polymers, 63, 72–81. DOI: 10.1016/j.carbpol.2005.08.003. http://dx.doi.org/10.1016/j.carbpol.2005.08.00310.1016/j.carbpol.2005.08.003Search in Google Scholar

[17] Dziadek, S., Jacques, S., & Bundle, D. R. (2008). A novel linker methodology for the synthesis of tailored conjugate vaccines composed of complex carbohydrate antigens and specific THcell peptide epitopes. Chemistry — A European Journal, 14, 5908–5917. DOI: 10.1002/chem.200800065. http://dx.doi.org/10.1002/chem.20080006510.1002/chem.200800065Search in Google Scholar PubMed

[18] Farkaš, P., & Bystrický, S. (2008). Hydrolysis of the terminal dimethylacetal moiety on the spacers bound to carboxy groups containing glucans. Carbohydrate Polymers, 74, 133–136. DOI: 10.1016/j.carbpol.2008.01.005. http://dx.doi.org/10.1016/j.carbpol.2008.01.00510.1016/j.carbpol.2008.01.005Search in Google Scholar

[19] Farkaš, P., & Bystický, S. (2007). Efficient activation of carboxyl polysaccharides for the preparation of conjugates. Carbohydrate Polymers, 68, 187–190. DOI: 10.1016/j.carbpol.2006.07.013. http://dx.doi.org/10.1016/j.carbpol.2006.07.01310.1016/j.carbpol.2006.07.013Search in Google Scholar

[20] García, A., Hernández, K., Chico, B., García, D., Villalonga, M. L., & Villalonga, R. (2009). Preparation of thermostable trypsin.polysaccharide neoglycoenzymes through Ugi multicomponent reaction. Journal of Molecular Catalysis B: Enzymatic, 59, 126–130. DOI: 10.1016/j.molcatb.2009.02.001. http://dx.doi.org/10.1016/j.molcatb.2009.02.00110.1016/j.molcatb.2009.02.001Search in Google Scholar

[21] Grabarek, Z., & Gergely, J. (1990). Zero-length crosslinking procedure with the use of active esters. Analytical Biochemistry, 185, 131–135. DOI: 10.1016/0003-2697(90)90267-D. http://dx.doi.org/10.1016/0003-2697(90)90267-D10.1016/0003-2697(90)90267-DSearch in Google Scholar

[22] Grandjean, C., Boutonnier, A., Dassy, B., Fournier, J.-M., & Mulard, L. A. (2009). Investigation towards bivalent chemically defined glycoconjugate immunogens prepared from acid-detoxified lipopolysaccharide of Vibrio cholerae O1, serotype Inaba. Glycoconjugate Journal, 26, 41–55. DOI: 10.1007/s10719-008-9160-6. http://dx.doi.org/10.1007/s10719-008-9160-610.1007/s10719-008-9160-6Search in Google Scholar

[23] Grandjean, C., Boutonnier, A., Guerreiro, C., Fournier, J.-M., & Mulard, L. A. (2005). On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. Journal of the Organic Chemistry, 70, 7123–7132. DOI: 10.1021/jo0505472. http://dx.doi.org/10.1021/jo050547210.1021/jo0505472Search in Google Scholar

[24] Griesbaum, K. (1970). Problems and possibilities of the free-radical addition of thiols to unsaturated compounds. Angewandte Chemie International Edition, 9, 273–287. DOI: 10.1002/anie.197002731. http://dx.doi.org/10.1002/anie.19700273110.1002/anie.197002731Search in Google Scholar

[25] Gurd, F. R. N. (1967). Carboxymethylation. Methods in Enzymology, 11, 532–541. DOI: 10.1016/S0076-6879(67)11064-1. http://dx.doi.org/10.1016/S0076-6879(67)11064-110.1016/S0076-6879(67)11064-1Search in Google Scholar

[26] Hermanson, G. T. (1996). Bioconjugate techniques. San Diego, CA, USA: Academic Press, Inc. Search in Google Scholar

[27] Hou, S.-J., Saksena, R., & Kova., P. (2008). Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydrate Research, 343, 196–210. DOI: 10.1016/j.carres.2007.10.015. http://dx.doi.org/10.1016/j.carres.2007.10.01510.1016/j.carres.2007.10.015Search in Google Scholar PubMed PubMed Central

[28] Hoyle, C. E., & Bowman, C. N. (2010). Thiol-ene click chemistry. Angewandte Chemie International Edition, 49, 1540–1573. DOI: 10.1002/anie.200903924. http://dx.doi.org/10.1002/anie.20090392410.1002/anie.200903924Search in Google Scholar PubMed

[29] Izumi, M., Okumura, S., Yuasa, H., & Hashimoto, H. (2003). Mannose-BSA conjugates: Comparison between commercially available linkers in reactivity and bioactivity. Journal of Carbohydrate Chemistry, 22, 317–329. DOI: 10.1081/CAR-120023475. http://dx.doi.org/10.1081/CAR-12002347510.1081/CAR-120023475Search in Google Scholar

[30] Johnson, E. C. B., & Kent, S. B. H. (2006). Insights into the mechanism and catalysis of the native chemical ligation reaction. Journal of the American Chemical Society, 128, 6640–6646. DOI: 10.1021/ja058344i. http://dx.doi.org/10.1021/ja058344i10.1021/ja058344iSearch in Google Scholar PubMed

[31] Jonkheijm, P., Weinrich, D., Köhn, M., Engelkamp, H., Christianen, P. C. M., Kuhlmann, J., Maan, J. C., Nüsse, D., Schroeder, H., Wacker, R., Breinbauer, R., Niemeyer, C. M., & Waldmann, H. (2008). Photochemical surface patterning by the thiol-ene reaction. Angewandte Chemie International Edition, 47, 4421–4424. DOI: 10.1002/anie.200800101. http://dx.doi.org/10.1002/anie.20080010110.1002/anie.200800101Search in Google Scholar PubMed

[32] Kiick, K. L., Saxon, E., Tirrell, D. A., & Bertozzi, C. R. (2002). Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proceedings of the National Academy of Sciences, 99, 19–24. DOI: 10.1073/pnas.012583299. http://dx.doi.org/10.1073/pnas.01258329910.1073/pnas.012583299Search in Google Scholar

[33] Kohn, J., & Wilchek, M. (1983). 1-Cyano-4-dimethylamino pyridinium tetrafluoroborate as a cyanylating agent for the covalent attachment of ligand to polysaccharide resins. FEBS Letters, 154, 209–210. DOI: 10.1016/0014-5793(83)80905-3. http://dx.doi.org/10.1016/0014-5793(83)80905-310.1016/0014-5793(83)80905-3Search in Google Scholar

[34] Köhn, M., & Breinbauer, R. (2004). The Staudinger ligation — a gift to chemical biology. Angewandte Chemie International Edition, 43, 3106–3116. DOI: 10.1002/anie.200401744. http://dx.doi.org/10.1002/anie.20040174410.1002/anie.200401744Search in Google Scholar PubMed

[35] Kubler-Kielb, J., Liu, T.-Y., Mocca, C., Majadly, F., Robbins, J. B., & Schneerson, R. (2006). Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infection and Immunity, 74, 4744–4749. DOI: 10.1128/IAI.00315-06. http://dx.doi.org/10.1128/IAI.00315-0610.1128/IAI.00315-06Search in Google Scholar PubMed PubMed Central

[36] Kubler-Kielb, J., & Pozsgay, V. (2005). A new method for conjugation of carbohydrates to proteins using an aminooxy-thiol heterobifunctional linker. Journal of the Organic Chemistry, 70, 6987–6990. DOI: 10.1021/jo050934b. http://dx.doi.org/10.1021/jo050934b10.1021/jo050934bSearch in Google Scholar PubMed

[37] Lees, A., Sen, G., & Acosta, A. L. (2006). Versatile and efficient synthesis of protein.polysaccharide conjugate vaccines using aminooxy reagents and oxime chemistry. Vaccine, 24, 716–729. DOI: 10.1016/j.vaccine.2005.08.096. http://dx.doi.org/10.1016/j.vaccine.2005.08.09610.1016/j.vaccine.2005.08.096Search in Google Scholar PubMed

[38] Leung, C., Chibba, A., Gómez-Biagi, R. F., & Nitz, M. (2009). Efficient synthesis and protein conjugation of β-(1→6)-D-N-acetylglucosamine oligosaccharides from the polysaccharide intercellular adhesin. Carbohydrate Research, 344, 570–575. DOI: 10.1016/j.carres.2008.12.021. http://dx.doi.org/10.1016/j.carres.2008.12.02110.1016/j.carres.2008.12.021Search in Google Scholar PubMed

[39] Li, C.-J. (2005). Organic reactions in aqueous media with a focus on carbon.carbon bond formations: A decade update. Chemical Reviews, 105, 3095–3165. DOI: 10.1021/cr030009u. http://dx.doi.org/10.1021/cr030009u10.1021/cr030009uSearch in Google Scholar PubMed

[40] Lin, F. L., Hoyt, H. M., van Halbeek, H., Bergman, R. G., & Bertozzi, C. R. (2005). Mechanistic investigation of the Staudinger ligation. Journal of the American Chemical Society, 127, 2686–2695. DOI: 10.1021/ja044461m. http://dx.doi.org/10.1021/ja044461m10.1021/ja044461mSearch in Google Scholar PubMed

[41] Lutz, J.-F., & Börner, H. G. (2008). Modern trends in polymer bioconjugates design. Progress in Polymer Science, 33, 1–39. DOI: 10.1016/j.progpolymsci.2007.07.005. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.00510.1016/j.progpolymsci.2007.07.005Search in Google Scholar

[42] Lutz, J.-F., & Zarafshani, Z. (2008). Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide.alkyne “click” chemistry. Advanced Drug Delivery Reviews, 60, 958–970. DOI: 10.1016/j.addr.2008.02.004. http://dx.doi.org/10.1016/j.addr.2008.02.00410.1016/j.addr.2008.02.004Search in Google Scholar

[43] Mieszala, M., Kogan, G., & Jennings, H. J. (2003). Conjugation of meningococcal lipooligosaccharides through their lipid A terminus conserves their inner epitopes and results in conjugate vaccines having improved immunological properties. Carbohydrate Research, 338, 167–175. DOI: 10.1016/S0008-6215(02)00395-6. http://dx.doi.org/10.1016/S0008-6215(02)00395-610.1016/S0008-6215(02)00395-6Search in Google Scholar

[44] Montalbetti, C. A. G. N., & Falque, V. (2005). Amide bond formation and peptide coupling. Tetrahedron, 61, 10827–10852. DOI: 10.1016/j.tet.2005.08.031. http://dx.doi.org/10.1016/j.tet.2005.08.03110.1016/j.tet.2005.08.031Search in Google Scholar

[45] Pavliakova, D., Chu, C., Bystrický, S., Tolson, N. W., Shiloach, J., Kaufman, J. B., Bryla, D. A., Robbins, J. B., & Schneerson, R. (1999). Treatment with succinic anhydride improves the immunogenicity of Shigella flexneri Type 2a O-specific polysaccharide-protein conjugates in mice. Infection and Immunity, 67, 5526–5529. 10.1128/IAI.67.10.5526-5529.1999Search in Google Scholar

[46] Pawlowski, A., Källenius, G., & Svenson, S. B. (2000). Preparation of pneumococcal capsular polysaccharide-protein conjugate vaccines utilizing new fragmentation and conjugation technologies. Vaccine, 18, 1873–1885. DOI: 10.1016/S0264-410X(99)00336-9. http://dx.doi.org/10.1016/S0264-410X(99)00336-910.1016/S0264-410X(99)00336-9Search in Google Scholar

[47] Pawlowski, A., Källenius, G., & Svenson, S. B. (1999). A new method of non-cross-linking conjugation of polysaccharides to proteins via thioether bonds for the preparation of saccharide.protein conjugate vaccines. Vaccine, 17, 1474–1483. DOI: 10.1016/S0264-410X(98)00385-5. http://dx.doi.org/10.1016/S0264-410X(98)00385-510.1016/S0264-410X(98)00385-5Search in Google Scholar

[48] Pozsgay, V., & Kubler-Kielb, J. (2008). Conjugation methods toward synthetic vaccines. In R. Roy (Ed.), Carbohydrate based vaccines (pp. 36–70). Washington, DC, USA: American Chemical Society. http://dx.doi.org/10.1021/bk-2008-0989.ch00310.1021/bk-2008-0989.ch003Search in Google Scholar

[49] Pozsgay, V., Vieira, N. E., & Yergey, A. (2002). A method for bioconjugation of carbohydrates using Diels-Alder cycloaddition. Organic Letters, 4, 3191–3194. DOI: 10.1021/ol026179v. http://dx.doi.org/10.1021/ol026179v10.1021/ol026179vSearch in Google Scholar PubMed

[50] Rideout, D. C., & Breslow, R. (1980). Hydrophobic acceleration of Diels-Alder reactions. Journal of the American Chemical Society, 102, 7816–7817. DOI: 10.1021/ja00546a048. http://dx.doi.org/10.1021/ja00546a04810.1021/ja00546a048Search in Google Scholar

[51] Rodionov, V. O., Presolski, S. I., Gardinier, S., Lim, Y.-H., & Finn, M. G. (2007). Benzimidazole and related ligands for Cu-catalyzed azide-alkyne cycloaddition. Journal of the American Chemical Society, 129, 12696–12704. DOI: 10.1021/ja072678l. http://dx.doi.org/10.1021/ja072678l10.1021/ja072678lSearch in Google Scholar PubMed

[52] Rogers, L. K., Leinweber, B. L., & Smith, C. V. (2006). Detection of reversible protein thiol modifications in tissues. Analytical Biochemistry, 358, 171–184. DOI: 10.1016/j.ab.2006.08.020. http://dx.doi.org/10.1016/j.ab.2006.08.02010.1016/j.ab.2006.08.020Search in Google Scholar

[53] Rostovtsev, V. V., Green, L. G., Fokin, V. V., & Sharpless, K. B. (2002). A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angewandte Chemie International Edition, 41, 2596–2599.DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-410.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4Search in Google Scholar

[54] Sanki, A. K., Talan, R. S., & Sucheck, S. J. (2009). Synthesis of small glycopeptides by decarboxylative condensation and insight into the reaction mechanism. The Journal of Organic Chemisty, 74, 1886–1896. DOI: 10.1021/jo802278w. http://dx.doi.org/10.1021/jo802278w10.1021/jo802278wSearch in Google Scholar

[55] Saxon, E., & Bertozzi, C. R. (2000). Cell surface engineering by a modified Staudinger reaction. Science, 287, 2007–2010. DOI: 10.1126/science.287.5460.2007. http://dx.doi.org/10.1126/science.287.5460.200710.1126/science.287.5460.2007Search in Google Scholar

[56] Schlottmann, S. A., Jain, N., Chirmule, N., & Esser, M. T. (2006). A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres. Journal of Immunological Methods, 309, 75–85. DOI: 10.1016/j.jim.2005.11.019. http://dx.doi.org/10.1016/j.jim.2005.11.01910.1016/j.jim.2005.11.019Search in Google Scholar

[57] Shafer, D. E., Toll, B., Schuman, R. F., Nelson, B. L., Mond, J. J., & Lees, A. (2000). Activation of soluble polysaccharides with 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) for use in protein-polysaccharide conjugate vaccines and immunological reagents. II. Selective crosslinking of proteins to CDAP-activated polysaccharides. Vaccine, 18, 1273–1281. DOI: 10.1016/S0264-410X(99)00370-9. http://dx.doi.org/10.1016/S0264-410X(99)00370-910.1016/S0264-410X(99)00370-9Search in Google Scholar

[58] Singh, R., & Whitesides, G. M. (1991). A reagent for reduction of disulfide bonds in proteins that reduces disulfide bonds faster than does dithiothreitol. Journal of Organic Chemistry, 56, 2332–2337. DOI: 10.1021/jo00007a018. http://dx.doi.org/10.1021/jo00007a01810.1021/jo00007a018Search in Google Scholar

[59] Sletten, E. M., & Bertozzi, C. R. (2009). Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angewandte Chemie International Edition, 48, 6974–6998. DOI: 10.1002/anie.200900942. http://dx.doi.org/10.1002/anie.20090094210.1002/anie.200900942Search in Google Scholar

[60] Sletten, E. M., & Bertozzi, C. R. (2008). A hydrophilic azacyclooctyne for Cu-free click chemistry. Organic Letters, 10, 3097–3099. DOI: 10.1021/ol801141k. http://dx.doi.org/10.1021/ol801141k10.1021/ol801141kSearch in Google Scholar

[61] Soellner, M. B., Nilsson, B. L., & Raine, R. T. (2006). Reaction mechanism and kinetics of the traceless Staudinger ligation. Journal of the American Chemical Society, 128, 8820–8828. DOI: 10.1021/ja060484k. http://dx.doi.org/10.1021/ja060484k10.1021/ja060484kSearch in Google Scholar

[62] Staudinger, H., & Meyer, J. (1919). Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und phosphinimine. Helvetica Chimimica Acta, 2, 635–646. DOI: 10.1002/hlca.19190020164. http://dx.doi.org/10.1002/hlca.1919002016410.1002/hlca.19190020164Search in Google Scholar

[63] Tietze, L. F., Schröter, C., Gabius, S., Brinck, U., Goerlach-Graw, A., & Gabius, H.-J. (1991). Conjugation of paminophenyl glycosides with squaric acid diester to a carrier protein and the use of the neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chemistry, 2, 148–153. DOI: 10.1021/bc00009a003. http://dx.doi.org/10.1021/bc00009a00310.1021/bc00009a003Search in Google Scholar

[64] Wang, J. Y., Chang, A. H. C., Guttormsen, H.-K., Rosas, A. L., & Kaspe, D. L. (2002). Construction of designer glycoconjugate vaccines with size-specific oligosaccharide antigens and site-controlled coupling. Vaccine, 21, 1112–1117. DOI: 10.1016/S0264-410X(02)00625-4. http://dx.doi.org/10.1016/S0264-410X(02)00625-410.1016/S0264-410X(02)00625-4Search in Google Scholar

[65] Wang, Q., Chan, T. R., Hilgraf, R., Fokin, V. V., Sharpless, K. B., & Finn, M. G. (2003). Bioconjugation by copper(I)-catalyzed azide-alkine [3 + 2] cycloaddition. Journal of the American Chemical Society, 125, 3192–3193. DOI: 10.1021/ja021381e. http://dx.doi.org/10.1021/ja021381e10.1021/ja021381eSearch in Google Scholar

[66] Xin, H., Dziadek, S., Bundle, D. R., & Cutler, J. E. (2008). Synthetic glycopeptide vaccines combining β-mannan and peptide epitopes induce protection against candidiasis. Proceedings of the National Academy of Sciences, 105, 13526–13531. DOI: 10.1073/pnas.0803195105. http://dx.doi.org/10.1073/pnas.080319510510.1073/pnas.0803195105Search in Google Scholar

[67] Xue, J., Pan, Y., & Guo, Z. (2002). Neoglycoprotein cancer vaccines: synthesis of an azido derivative of GM3 and its efficient coupling to proteins through a new linker. Tetrahedron Leters, 43, 1599–1602. DOI: 10.1016/S0040-4039(02)00071-0. http://dx.doi.org/10.1016/S0040-4039(02)00071-010.1016/S0040-4039(02)00071-0Search in Google Scholar

[68] Zhang, J., Yergey, A., Kowalak, J., & Kováč, P. (1998). Linking carbohydrates to proteins using N-(2,2-dimethoxyethyl)-6-hydroxy hexanamide. Tetrahedron, 54, 11783–11792. DOI: 10.1016/S0040-4020(98)83039-1. 10.1016/S0040-4020(98)83039-1Search in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0057-z/html
Scroll to top button