Skip to main content
Log in

Covariance algebra of a partial dynamical system

  • Published:
Central European Journal of Mathematics

Abstract

A pair (X, α) is a partial dynamical system if X is a compact topological space and α: Δ→ X is a continuous mapping such that Δ is open. Additionally we assume here that Δ is closed and α(Δ) is open. Such systems arise naturally while dealing with commutative C *-dynamical systems.

In this paper we construct and investigate a universal C *-algebra C *(X,α) which agrees with the partial crossed product [10] in the case α is injective, and with the crossed product by a monomorphism [22] in the case α is onto.

The main method here is to use the description of maximal ideal space of a coefficient algebra, cf. [16, 18], in order to construct a larger system,\((\tilde X,\tilde \alpha )\) where\(\tilde \alpha \) is a partial homeomorphism. Hence one may apply in extenso the partial crossed product theory [10, 13], In particular, one generalizes the notions of topological freeness and invariance of a set, which are being use afterwards to obtain the Isomorphism Theorem and the complete description of ideals of C *(X, α).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Adji, M. Laca, M. Nilsen and I. Raeburn: “Crossed products by semigroups of endomorphisms and the Toeplitz algebras of ordered groups”, Proc. Amer. Math. Soc., Vol. 122(4), (1994), pp. 1133–1141.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Antonevich: Linear Functional Equations. Operator Approach, Operator Theory Advances and Applications, Vol. 83, Birkhauser Verlag, Basel, 1996.

    MATH  Google Scholar 

  3. A. Antonevich and A.V. Lebedev: Functional differential equations: I. C *-theory, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 70, Longman Scientific & Technical, Harlow, Essex, England, 1994.

    Google Scholar 

  4. B. Blackadar: K-theory for Operator algebras, Springer-Verlag, New York, 1986.

    MATH  Google Scholar 

  5. T. Bates, D. Pask, I. Raeburn and W. Szymański: “C*-algebras of row-finite graphs”, New York J. Math. Vol. 6, (2000), pp. 307–324.

    MATH  MathSciNet  Google Scholar 

  6. O. Bratteli and D. W. Robinson: Operator algebras and Quantum Statistical Mechanics I, II New York 1979, 1980.

  7. M. Brin and G. Stuck: Introduction to Dynamical Systems, Cambridge University Press, 2003.

  8. J. Cuntz: “Simple C *-algebras generated by isometries”, Commun. Math. Phys., Vol. 57, (1977), pp. 173–185.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Dixmier: C *-algebres et leurs representations, Gauter-Villars, Paris, 1969.

    Google Scholar 

  10. R. Exel: “Circle actions on C *-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequence”, J. Funct. analysis, Vol. 122, (1994), pp. 361–401.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Exel and M. Laca: “Cuntz-Krieger algebras for infinite matrices”, J. Reine Angew. Math., Vol. 512, (1999), pp. 119–172. http://front.math.ucdavis.edu/funct-an/9712008

    MATH  MathSciNet  Google Scholar 

  12. R. Exel: “A new look at the crossed-product of a C *-algebra by an endomorphism”, Ergodic Theory Dynam. Systems, Vol. 23, (2003), pp. 1733–1750, http://front.math.ucdavis.edu/math.OA/0012084

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Exel, M. Laca and J. Quigg: “Partial dynamical systems and C *-algebras generated by partial isometries”, J. Operator Theory, Vol. 47, (2002), pp. 169–186. http://front.math.ucdavis.edu/funct-an/9712007.

    MATH  MathSciNet  Google Scholar 

  14. R. Exel and D. Royer: “The crossed product by a partial endomorphism” Munuscript at arXiv:math.OA/0410192 vl 6 Oct 2004, http://front.math.ucdavis.edu/math.OA/0410192.

  15. R. Exel and A. Vershik: “C*-algebras, of irreversible dynamical systems”, To appear in Canadian J. Math., http://front.math.ucdavis.edu/math.OA/0203185.

  16. B.K. Kwaśniewski and A.V. Lebedev: “Maximal ideal space of a commutative coefficient algebra”, preprint, http://front.math.ucdavis.edu/math.OA/0311416.

  17. M. Laca and I. Raeburn: “A semigroup crossed product arising in number theory”, J. London Math. Soc., Vol. 59, (1999), pp. 330–344.

    Article  MATH  MathSciNet  Google Scholar 

  18. A.V. Lebedev and A. Odzijewicz: “Extensions of C *-algebras by partial isometries”, Matem. Sbornik, Vol. 195(7), (2004), pp. 37–70. http://front.math.ucdavis.edu/math.OA/0209049

    MATH  MathSciNet  Google Scholar 

  19. A.V. Lebedev: “Topologically free partial actions and faithful representations of partial crossed products”, preprint, http://front.math.ucdavis.edu/math.OA/0305105.

  20. K. McClanachan: “K-theory for partial crossed products by discrete groups”, J. Funct. Analysis, Vol. 130, (1995), pp. 77–117.

    Article  Google Scholar 

  21. G.J. Murphy: C *-algebras and operator theory, Academic Press, 1990.

  22. G.J. Murphy: “Crossed products of C *-algebras by endomorphisms”, Integral Equations Oper. Theory, Vol. 24, (1996), pp. 298–319.

    Article  MATH  MathSciNet  Google Scholar 

  23. D.P. O’Donovan: “Weighted shifts and covariance algebras”, Trans. Amer. Math. Soc., Vol. 208, (1975), pp. 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  24. W.L. Paschke: “The Crossed Product of a C *-algebra by an Endomorphism”, Proc. Amer. math. Soc., Vol. 80, (1980), pp. 113–118.

    Article  MATH  MathSciNet  Google Scholar 

  25. G.K. Pedersen: C *-algebras and their automorphism groups, Academic Press, London, 1979.

    MATH  Google Scholar 

  26. P.J. Stacey: “Crossed products of C *-algebras by *-endomorphisms”, J. Austral. Math. Soc., Vol. 54, (1993), pp. 204–212.

    Article  MATH  MathSciNet  Google Scholar 

  27. R.F. Williams: “Expanding attractors”, IHES Publ. Math., Vol. 54, (1973), pp. 204–212.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kosma Kwaśniewski, B. Covariance algebra of a partial dynamical system. centr.eur.j.math. 3, 718–765 (2005). https://doi.org/10.2478/BF02475628

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475628

Keywords

MSC (2000)

Navigation