Skip to main content
Log in

Fractional calculus on time scales with Taylor’s theorem

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We present a definition of the Riemann-Liouville fractional calculus for arbitrary time scales through the use of time scales power functions, unifying a number of theories including continuum, discrete and fractional calculus. Basic properties of the theory are introduced including integrability conditions and index laws. Special emphasis is given to extending Taylor’s theorem to incorporate our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, Certain fractional q-integrals and q-derivatives. Proc. Cambridge Philos. Soc. 66 (1969), 365–370.

    Article  MathSciNet  MATH  Google Scholar 

  2. W.A. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. (2) 15 (1966/1967), 135–140.

    Article  MathSciNet  MATH  Google Scholar 

  3. W.A. Al-Salam, q-analogues of Cauchy’s formulas. Proc. Amer. Math. Soc. 17 (1966), 616–621.

    MathSciNet  MATH  Google Scholar 

  4. G.A. Anastassiou, On right fractional calculus. Chaos Solitons Fractals 42, No 1 (2009), 365–376; doi: 10.1016/j.chaos.2008.12.013.

    Article  MathSciNet  MATH  Google Scholar 

  5. G.A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities. Comput. Math. Appl. 59, No 12 (2010), 3750–3762; doi: 10.1016/j.camwa.2010.03.072.

    Article  MathSciNet  MATH  Google Scholar 

  6. D.R. Anderson, Taylor polynomials for nabla dynamic equations on time scales. Panamer. Math. J. 12, No 4 (2002), 17–27.

    MathSciNet  MATH  Google Scholar 

  7. F.M. Atici, P.W. Eloe, Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, No 3 (2007), 333–344; doi: 10.2991/jnmp.2007.14.3.4.

    Article  MathSciNet  Google Scholar 

  8. A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, No 1 (2002), 66–79; doi: 10.1016/S0022-247X(02)00048-3.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bastos, D. Mozyrska, D. Torres, Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11, No J11 (2011), 1–9.

    MathSciNet  Google Scholar 

  10. M. Bohner, G.Sh. Guseinov, Improper integrals on time scales. Dynam. Systems Appl. 12, No 1–2 (2003), 45–65.

    MathSciNet  MATH  Google Scholar 

  11. M. Bohner, G.Sh. Guseinov, Riemann and Lebesgue integration. In: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, MA (2003), 117–163.

    Chapter  Google Scholar 

  12. M. Bohner, G.Sh. Guseinov, Multiple Lebesgue integration on time scales. Adv. Difference Equ. 2006, Art. ID 026391 (2006), 1–12; doi: 10.1155/ADE/2006/26391.

    MathSciNet  Google Scholar 

  13. M. Bohner, H. Luo, Singular second-order multipoint dynamic boundary value problems with mixed derivatives. Adv. Difference Equ. 2006, Art. ID 054989 (2006), 1–15; doi: 10.1155/ADE/2006/54989.

    MathSciNet  Google Scholar 

  14. M. Bohner, A. Peterson, Dynamic Equations on Time Scales. Birkhäuser Boston Inc., Boston, MA (2001); doi: 10.1007/978-1-4612-0201-1.

    Book  MATH  Google Scholar 

  15. A. Cabada, D.R. Vivero, Criterions for absolute continuity on time scales. J. Difference Equ. Appl. 11, No 11 (2005), 1013–1028; doi: 10.1080/10236190500272830.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Cabada, D.R. Vivero, Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral: Application to the calculus of Δ-antiderivatives. Math. Comput. Modelling 43, No 1–2 (2006), 194–207; doi: 10.1016/j.mcm.2005.09.028.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Caputo, Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. Astr. Soc. 13, No 5 (1967), 529–539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 4–14.

    Article  Google Scholar 

  18. J. Čermák, L. Nechvátal, On (q, h)-analogue of fractional calculus. J. Nonlinear Math. Phys. 17, No 1 (2010), 51–68. doi: 10.1142/S1402925110000593

    Article  MathSciNet  MATH  Google Scholar 

  19. J.B. Díaz, T.J. Osler, Differences of fractional order. Math. Comp. 28 (1974), 185–202.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Díaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, No 2 (2007), 179–192.

    MathSciNet  MATH  Google Scholar 

  21. M.M. Džrbašjan, A.B. Nersesyan, Criteria of expansibility of functions in Dirichlet series. Izv. Akad. Nauk Armyan. SSR. Ser. Fiz.-Mat. Nauk 11, No 5 (1958), 85–106.

    MathSciNet  Google Scholar 

  22. H.L. Gray, N.F. Zhang, On a new definition of the fractional difference, Math. Comp. 50, No 182 (1988), 513–529 doi: 10.2307/2008620

    Article  MathSciNet  MATH  Google Scholar 

  23. G.Sh. Guseinov, Integration on time scales. J. Math. Anal. Appl. 285, No 1 (2003), 107–127. doi: 10.1016/S0022-247X(03)00361-5

    Article  MathSciNet  MATH  Google Scholar 

  24. G.Sh. Guseinov, B. Kaymakçalan, Basics of Riemann delta and nabla integration on time scales. J. Difference Equ. Appl. 8, No 11 (2002), 1001–1017. doi: 10.1080/10236190290015272

    Article  MathSciNet  MATH  Google Scholar 

  25. G.H. Hardy, Riemann’s form of Taylor’s series. J. London Math. Soc. 20 (1945), 48–57.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.R.M. Hosking, Fractional differencing. Biometrika 68, No 1 (1981), 165–176. doi: 10.1093/biomet/68.1.165

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, No 9–10 (2006), 1367–1376. doi: 10.1016/j.camwa.2006.02.001

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Kac, P. Cheung, Quantum Calculus. Springer-Verlag, New York (2002); doi: 10.1007/978-1-4613-0071-7.

    Book  MATH  Google Scholar 

  29. V. Kiryakova, Generalized Fractional Calculus and Applications. Longman Scientific Techn. & J. Wiley, Harlow — N. York (1994).

    MATH  Google Scholar 

  30. K.M. Miller, B. Ross, Fractional difference calculus. In: Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Horwood, Chichester (1989), 139–152.

  31. K.M. Miler, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons Inc., New York (1993).

    Google Scholar 

  32. M. Néel, A. Abdennadher, J. Solofoniaina, A continuous variant for Grünwald-Letnikov fractional derivatives. Phys. A. 387, No 12 (2008), 2750–2760; doi: http://dx.doi.org/10.1016/j.physa.2008.01.090.

    Article  MathSciNet  Google Scholar 

  33. Z.M. Odibat, N.T. Shawagfeh, Generalized Taylor’s formula. Appl. Math. Comput. 186, No 186 (2007), 286–293; doi: 10.1016/j.amc.2006.07.102.

    Article  MathSciNet  MATH  Google Scholar 

  34. K.B. Oldham, J. Spanier, The Fractional Calculus. Academic Press, New York — London (1974).

    MATH  Google Scholar 

  35. M.D. Ortigueira, The fractional quantum derivative and its integral representations. Commun. Nonlinear Sci. Numer. Simul. 15, No 4 (2010), 956–962; doi: 10.1016/j.cnsns.2009.05.026.

    Article  MathSciNet  MATH  Google Scholar 

  36. T.J. Osler, Taylor’s series generalized for fractional derivatives and applications. SIAM J. Math. Anal. 2 (1971), 37–48.

    Article  MathSciNet  MATH  Google Scholar 

  37. I. Podlubny, Fractional Differential Equations. Academic Press Inc., San Diego, CA (1999).

    MATH  Google Scholar 

  38. P.M. Rajković, S.D. Marinković, M.S. Stanković, Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, No 1 (2007), 311–323; doi: 10.2298/AADM0701311R.

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Rubin, Fractional Integrals and Potentials. Longman, Harlow (1996).

    MATH  Google Scholar 

  40. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993).

    MATH  Google Scholar 

  41. J.J. Trujillo, M. Rivero, B. Bonilla, On a Riemann-Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, No 1 (1999), 255–265; doi: 10.1006/jmaa.1998.6224.

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Watanabe, Notes on the generalized derivative of Riemann-Liouville and its application to Leibnitz’s formula, I and II. T?ohoku Math. J. 34, (1931), 8–41.

    Google Scholar 

  43. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer-Verlag, New York (2003); doi: 10.1007/978-0-387-21746-8.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Anthony Williams.

About this article

Cite this article

Williams, P.A. Fractional calculus on time scales with Taylor’s theorem. fcaa 15, 616–638 (2012). https://doi.org/10.2478/s13540-012-0043-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0043-y

MSC 2010

Key Words and Phrases

Navigation