Skip to main content
Log in

Liquid exfoliation — new low-temperature method of nanotechnology

  • Published:
Materials Science-Poland

Abstract

Two-dimensional nano-crystals, nanosheets, are a new special type of nanomaterials recently discovered. They have attracted interest due to their unique potential applications especially in electronics. In this mini review, we present the current status of liquid exfoliation of layered crystals — an original new method of production of nanosheets. This “top down” synthesis is a low-temperature physico-chemical process already used to graphene production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boehm H., Claus A., Hoffmann U., Fischer G., Zeitschrift fur Naturfoschung, B, 17 (1962), 150.

    Google Scholar 

  2. Novoselov K.S. et al., Science, 306 (2004), 666.

    Article  CAS  Google Scholar 

  3. Feynman R., Science, 235 (1960), 22.

    Google Scholar 

  4. Han W., Wu L., Watanabe K., Taniguchi T., Appl. Phys. Lett., 93 (2008), 223103.

    Article  Google Scholar 

  5. Preobrajenski A.B. et al., Phys. Rev. B, 77 (2008), 085421.

    Article  Google Scholar 

  6. Li S. et al., Nanoletters, 10 (2010), 3209.

    Article  Google Scholar 

  7. Kim K.S. et al., Nature, 457 (2009), 706.

    Article  CAS  Google Scholar 

  8. Zhang H.X and Feng P.X., Carbon, 48 (2010), 359.

    Article  CAS  Google Scholar 

  9. Land T.A., Michely T., Behm R.J., Hemminger J.C, Comsa G., Surf. Sci., 264 (1992), 261.

    Article  CAS  Google Scholar 

  10. Mattevi C., Kim H. and Chhowalla M., J. Mater. Chem., 21 (2011), 3324.

    Article  CAS  Google Scholar 

  11. Heer de W.A. Berger C., Ruan M., Sprinkle M., Si X., Hu Y., Zhang B., Hankinson J., Conrad E., PNAS 108, (2011), 16905.

    Google Scholar 

  12. Strupinski W. et al., Nanoletters, 11 (2011), 1786.

    Article  CAS  Google Scholar 

  13. Fowkes F., J. Phys. Chem., 66 (1962), 382.

    Article  CAS  Google Scholar 

  14. Hernandez Y. et al., Nat. Nanotechnol. 3(9) (2008), 563

    Article  CAS  Google Scholar 

  15. Fechy H.J., Hellster E., Fu Z., Johnson W.L., Adv. Pow. Metal., 1 (1989), 111.

    Google Scholar 

  16. Schaffer G.B., Mc Cormick P.G., Mat. Forum, 16 (1992), 91.

    CAS  Google Scholar 

  17. Coleman J.N. et al., Science, 331 (2011), 568.

    Article  CAS  Google Scholar 

  18. Hennig G.B., Science, 14, (1965), 733.

    Article  Google Scholar 

  19. Huang J.Y., Iia X.B., Yasuda H., Mori H., Phil. Mag. Lett., 79 (1999), 217.

    Article  CAS  Google Scholar 

  20. Mason T.J., Lorimer J.P., Applied Sonochemistry, Wiley-VCH Verlag GmbH &Co. 2002

    Book  Google Scholar 

  21. Henglein A., Ultrasonics 25 (1987), 6.

    Article  CAS  Google Scholar 

  22. Matula T..J. and Crum L.A., Sonochemistry and Sonoluminescence, ed. Crum L.A., Kluwer Academic Publishers 1999

  23. Suslick, K.S., Doktycz S.J., The Effects of Ultrasound on Solids in Advances in Sonochemistry, ed. Mason T.J., AI Press, New York, (1990), 197.

  24. Suragan N., Urban P.L., J. Sep. Sci., 32 (2009) 1889.

    Article  Google Scholar 

  25. Pohl H.A., J. Appl. Phys., 22 (1951), 869.

    Article  CAS  Google Scholar 

  26. Burg B.R., Poulikakos D., J. Mater. Res., 26 (2011), 1561.

    Article  CAS  Google Scholar 

  27. Lu W., Koerner H., Vala R., Appl. Phys Lett., 89 (2006), 223118.

    Article  Google Scholar 

  28. Nuvoli D. et al., J. Mat. Chem., 21 (2011), 3428.

    Article  CAS  Google Scholar 

  29. Park S. et al., Chem. Mater. 20 (2008), 6592.

    Article  CAS  Google Scholar 

  30. Viculis L.M., Mack J.J., Mayer O.M., Hahn H.T., Kaner R.B., J. Mater. Chem., 15 (2005), 974.

    Article  CAS  Google Scholar 

  31. Gordon R.A., Yang D., Crozier E.D., Jiang D.T., Frindt R.F., Phys. Rev. B, 65 (2002), 125407.

    Article  Google Scholar 

  32. Koch C.C., Rev. Adv. Mater. Sci. 5 (2003), 91.

    CAS  Google Scholar 

  33. Lin Y., Williams T.V., Connell J.W., J. Phys. Chem. Lett. 1 (2010), 277.

    Article  Google Scholar 

  34. Janot R., Guerard D., Carbon 40 (2002), 2887.

    Article  CAS  Google Scholar 

  35. Weifeng Z., Furong W., Hang W., Guohua C., J. Nano., 1155 (2010), 528235.

    Google Scholar 

  36. Lu H.L., Ying C., Behan G., Hongzhou Z., Petravicc M., Glushenkov A.M., J. Mat. Chem. 21 (2011), 11862.

    Article  Google Scholar 

  37. Antisari M.V., Montone A., Jovic N., Piscopiello E., Alvani C., Pilloni L., Scripta Materialia, 55 (2006), 1047.

    Article  CAS  Google Scholar 

  38. Ting He et al., Mat. Trans. 4 (2009), 749.

    Google Scholar 

  39. Cui X., Zhang Ch., Hao R., Hou Y., Nanoscale 3 (2011), 2118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Kostecki.

About this article

Cite this article

Kostecki, M., Olszyna, A.R. & Sokołowska, A. Liquid exfoliation — new low-temperature method of nanotechnology. Mater Sci-Pol 31, 165–172 (2013). https://doi.org/10.2478/s13536-012-0086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-012-0086-0

Keywords

Navigation