Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2006

Uncooled infrared photodetectors in Poland

  • J. Piotrowski EMAIL logo and A. Piotrowski
From the journal Opto-Electronics Review

Abstract

The history and present status of the middle and long wavelength Hg1-xCdxTe infrared detectors in Poland are reviewed. Research and development efforts in Poland were concentrated mostly on uncooled market niche.

Technology of the infrared photodetectors has been developed by several research groups. The devices are based on mercury-based variable band gap semiconductor alloys. Modified isothermal vapour phase epitaxy (ISOVPE) has been used for many years for research and commercial fabrication of photoconductive, photoelectromagnetic and other devices. Bulk growth and liquid phase epitaxy was also used. At present, the fabrication of IR devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition (MOCVD), frequently in combination with the ISOVPE.

Photoconductive and photoelectromagnetic detectors are still in production. The devices are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, the PV devices could offer high performance and very fast response. At present, the uncooled long wavelength devices of conventional design suffer from two issues; namely low quantum efficiency and very low junction resistance. It makes them useless for practical applications. The problems have been solved with advanced 3D band gap engineered architecture, multiple cell heterojunction devices connected in series, monolithic integration of the detectors with microoptics and other improvements. Present fabrication program includes devices which are optimized for operation at any wavelength within a wide spectral range 1–15 μm and 200–300 K temperature range. Special solutions have been applied to improve speed of response. Some devices show picoseconds range response time. The devices have found numerous civilian and military applications.

[1] W.D. Lawson, S. Nielsen, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe-CdTe”, J. Phys. Chem. Solids 9, 325–329 (1959). http://dx.doi.org/10.1016/0022-3697(59)90110-610.1016/0022-3697(59)90110-6Search in Google Scholar

[2] R.R. Galazka and W. Giriat, “Electrical properties of the CdTe-HgTe system”, Bull. Acad. Polon. Sci. 9, 281 (1961). Search in Google Scholar

[3] R. Gałazka, “Preparation, doping and electrical properties of Hg0.9Cd0.1Te”, Acta Phys. Polon. 24, 791–800 (1963). Search in Google Scholar

[4] W. Giriat, Z. Dziuba, R.R. Galazka, L. Sosnowski, and T. Zakrzewski, “Electrical properties of the semiconducting system CdxHg1-xTe”, Proc. 7 th ICPS, Paris 1964, Dunod Editeur, 1251 (1964). Search in Google Scholar

[5] W. Giriat and M. Grynberg, “Photoelectromagnetic infrared detector”, Przeglad Elektroniki 4, 216–221 (1963). (in Polish). Search in Google Scholar

[6] J. Piotrowski and A. Rogalski, Semiconductor Infrared Detectors, WNT, Warsaw 1984. (in Polish). Search in Google Scholar

[7] G. Cohen-Solal and Y. Marfaing, “Transport of photo-carriers in CdxHg1-xTe graded-gap structures”, Solid State Electronics 11, 1131–1147 (1968). http://dx.doi.org/10.1016/0038-1101(68)90005-110.1016/0038-1101(68)90005-1Search in Google Scholar

[8] J. Piotrowski, “A new method of obtaining CdxHg1-xTe thin films”, Electron Technology 5, 87–89 (1972). Search in Google Scholar

[9] J. Piotrowski, “Electrical and photoelectric properties of Hg1-xCdxTe films”, Theses, MUT, Warsaw, 1973. (in Polish). Search in Google Scholar

[10] E. Igras, R. Jezykowski, T. Persak, J. Piotrowski, and Z. Nowak, “Epitaxial CdxHg1-xTe layers as infrared detectors”, Proc 6 th Int. Symp. on Photon Detectors 221, Budapest, 236 (1974). Search in Google Scholar

[11] J. Piotrowski, W. Galus, and M. Grudzien, “Near roomtemperature IR photo-detectors”, Infrared Phys. 31, 1–48 (1991). http://dx.doi.org/10.1016/0020-0891(91)90037-G10.1016/0020-0891(91)90037-GSearch in Google Scholar

[12] Z. Nowak, J. Piotrowski, and J. Rutkowski, “Growth of HgZnTe by cast recrystallization”, J. Crystal Growth 89, 237–241 (1988). http://dx.doi.org/10.1016/0022-0248(88)90407-110.1016/0022-0248(88)90407-1Search in Google Scholar

[13] K. Adamiec, A. Maciak, Z. Nowak, and J. Piotrowski, “ZnHgTe as a material for ambient temperature 10.6 μm photodetectors”, Appl. Phys. Lett. 54, 143–144 (1989). http://dx.doi.org/10.1063/1.10121010.1063/1.101210Search in Google Scholar

[14] J. Piotrowski, K. Adamiec, and A. Maciak, “High-temperature 10.6 μm HgZnTe photodetectors”, Infrared Phys. 2/4, 267–270 (1989). http://dx.doi.org/10.1016/0020-0891(89)90061-410.1016/0020-0891(89)90061-4Search in Google Scholar

[15] P. Brogowski, H. Mucha, and J Piotrowski, “Modification of mercury cadmium telluride, mercury manganese tellurium, and mercury zinc telluride by ion etching”, Phys. Stat. Sol. 114(a), K37 (1989). 10.1002/pssa.2211140154Search in Google Scholar

[16] P. Brogowski and J. Piotrowski, “The p-to-n conversion of HgCdTe, HgZnTe, and HgMnTe by anodic oxidation and subsequent heat treatment”, Semicond. Sci. 5, 530–532 (1990). http://dx.doi.org/10.1088/0268-1242/5/6/01110.1088/0268-1242/5/6/011Search in Google Scholar

[17] E. Igras and J. Piotrowski, “A new (Cd,Hg)Te photodiode type with protected junction surface”, Optica Applicata 6, 99–106 (1976). Search in Google Scholar

[18] A. Rogalski, J. Piotrowski, and J. Gronkowski, “A modified hot wall epitaxy technique for the growth of CdTe and Hg1-xCdxTe epitaxial layers”, Thin Solid Films 191, 239–245 (1990). http://dx.doi.org/10.1016/0040-6090(90)90376-O10.1016/0040-6090(90)90376-OSearch in Google Scholar

[19] L. Kubiak, P. Madejczyk, J. Wenus, W. Gawron, K. Jóźwikowski, J. Rutkowski, and A. Rogalski, “Status of HgCdTe photodiodes at the Military University of Technology”, Opto-Electron. Rev. 11, 211–226 (2003). Search in Google Scholar

[20] J. Piotrowski, A. Jóźwikowska, K. Jóźwikowski, and R. Ciupa, “Numerical analysis of longwavelength extracted photodiodes”, Infrared Phys. 34, 565–572 (1993). http://dx.doi.org/10.1016/0020-0891(93)90112-K10.1016/0020-0891(93)90112-KSearch in Google Scholar

[21] A. Rogalski and J. Piotrowski, “Intrinsic infrared photodetectors”, Prog. Quant. Electr. 12, 87–289 (1988). http://dx.doi.org/10.1016/0079-6727(88)90001-810.1016/0079-6727(88)90001-8Search in Google Scholar

[22] Infrared Photon Detectors, edited by A. Rogalski, SPIE Optical Engineering Press, Bellingham, Washington USA, 1995. Search in Google Scholar

[23] A. Rogalski, Infrared Detectors, Gordon and Breach Science Publishers, Amsterdam, 2000. 10.1201/9781420022506Search in Google Scholar

[24] A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-gap Semiconductor Photodiodes, SPIE Press, Bellingham, 2000. 10.1117/3.PM77.ch2Search in Google Scholar

[25] A. Rogalski, “Hg-based alternatives to MCT”, in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001. 10.1007/978-1-4615-1607-1_13Search in Google Scholar

[26] A. Rogalski, “Infrared detectors: status and trends”, Progress in Quantum Electronics 27, 59–210 (2003). http://dx.doi.org/10.1016/S0079-6727(02)00024-110.1016/S0079-6727(02)00024-1Search in Google Scholar

[27] A. Rogalski, “Photon detectors”, in Encyclopedia of Optical Engineering, pp. 1985–2035, edited by R. Driggers, Marcel Dekker, Inc., New York, 2003. Search in Google Scholar

[28] A. Rogalski, Infrared Detectors: Developments, SPIE Milestone Series, SPIE Optical Engineering Press, Bellingham, Washington USA, 2004. Search in Google Scholar

[29] A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267–2336 (2005). http://dx.doi.org/10.1088/0034-4885/68/10/R0110.1088/0034-4885/68/10/R01Search in Google Scholar

[30] P. Becla, E. Dudziak, and J.M. Pawlikowski, “Spectral sensitivity of the photovoltaic effect in CdxHg1-xTe p-n junctions”, Optica Applicata 4, 3–5 (1974). Search in Google Scholar

[31] J.M. Pawlikowski and P. Becla, “Some properties of photo-voltaic Hg1-xCdxTe detectors for infrared radiation”, Infrared Phys. 15, 331–337 (1975). http://dx.doi.org/10.1016/0020-0891(75)90051-210.1016/0020-0891(75)90051-2Search in Google Scholar

[32] P. Becla and J.M. Pawlikowski, “Epitaxial Hg1-xCdxTe photovoltaic detectors”, Infrared Phys. 16, 457–464 (1975). http://dx.doi.org/10.1016/0020-0891(76)90087-710.1016/0020-0891(76)90087-7Search in Google Scholar

[33] J.M. Pawlikowski, “Photoconductivity of graded-gap Hg1-xCdxTe”, Infrared Physics 19, 179–184 (1978). http://dx.doi.org/10.1016/0020-0891(79)90024-110.1016/0020-0891(79)90024-1Search in Google Scholar

[34] J.M. Pawlikowski, “Application of epitaxial graded-gap semiconductor layers broad range photodetectors”, Thin Solid Film 50, 269–272 (1978). http://dx.doi.org/10.1016/0040-6090(78)90112-810.1016/0040-6090(78)90112-8Search in Google Scholar

[35] P. Becla and E. Placzek-Popko, “Electrical properties of infrared photovoltaic Hg1-xCdxTe detectors”, Infrared Phys. 21, 323–332 (1981). http://dx.doi.org/10.1016/0020-0891(81)90038-510.1016/0020-0891(81)90038-5Search in Google Scholar

[36] M. Nowak, “The photomagnetoelectric effect and photo-conductivity for non-normal incidence of radiation”, Phys. Stat. Sol. (a)80, 691–701 (1983). 10.1002/pssa.2210800235Search in Google Scholar

[37] J. Piotrowski, Z. Djurić, W. Galus, V. Jović, M. Grudzień, Z. Djinović, and Z. Nowak, “Composition and thickness control of CdxHg1-xTe layers grown by open tube isothermal vapour phase epitaxy”, J. Crystal Growth 83, 122–126 (1987). http://dx.doi.org/10.1016/0022-0248(87)90512-410.1016/0022-0248(87)90512-4Search in Google Scholar

[38] J. Piotrowski, Z. Nowak, M. Grudzień, W. Galus, K. Adamiec, Z. Djurić, V. Jović, and Z. Djinović, “High capability, quasi closed growth system for isothermal vapour phase epitaxy of (Hg,Cd)Te”, Thin Solid Film 161, 157–169 (1988). http://dx.doi.org/10.1016/0040-6090(88)90247-710.1016/0040-6090(88)90247-7Search in Google Scholar

[39] Z. Djuric and J. Piotrowski, “Generalized model of the isothermal vapour phase epitaxy of HgCdTe”, Appl. Phys. Lett. 51, 1699–1701 (1987). http://dx.doi.org/10.1063/1.9854810.1063/1.98548Search in Google Scholar

[40] J. Piotrowski and M. Razeghi, “Improved performance of IR photodetectors with 3D gap engineering”, Proc. SPIE 2397, 180–192 (1995). Search in Google Scholar

[41] K. Adamiec, M. Grudzień, Z. Nowak, J. Pawluczyk, J. Piotrowski, J. Antoszewski, J. Dell, C. Musca, and L. Faraone, “Isothermal vapour phase epitaxy as a versatile technology for infrared photodetectors”, Proc. SPIE 2999, 34–43 (1997). Search in Google Scholar

[42] A. Piotrowski, P. Madejczyk, W. Gawron, K. Klos, M. Romanis, M. Grudzien, A. Rogalski, and J. Piotrowski, “MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors”, Opto-Electron. Rev. 12, 453–458 (2004). Search in Google Scholar

[43] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, “Recent progress in MOCVD growth of Hg1-xCdxTe heterostructures for uncooled infrared photodetectors”, Proc. SPIE 5957, 273–284 (2005). Search in Google Scholar

[44] M. Grudzieén and J. Piotrowski, “Monolithic optically immersed HgCdTe IR detectors”, Infrared Phys. 29, 251–253 (1989). http://dx.doi.org/10.1016/0020-0891(89)90058-410.1016/0020-0891(89)90058-4Search in Google Scholar

[45] J. Piotrowski, W. Gawron, and Z. Djuric, “New generation of near-room-temperature photodetectors”, Optical Engineering 33, 1413–1421 (1994). http://dx.doi.org/10.1117/12.16579510.1117/12.165795Search in Google Scholar

[46] J. Piotrowski, “Hg1-xCdxTe infrared photodetectors”, in Infrared Photodetectors, pp. 391–494, SPIE, Bellingham, 1995. Search in Google Scholar

[47] J. Piotrowski and W. Gawron, “Ultimate performance of infrared photodetectors and figure of merit of detector mterial”, Infrared Physics and Technology 38, 63–68 (1997). http://dx.doi.org/10.1016/S1350-4495(96)00030-810.1016/S1350-4495(96)00030-8Search in Google Scholar

[48] J. Piotrowski, M. Grudzień, Z. Nowak, Z. Orman, J. Pawluczyk, M. Romanis, and W. Gawron, “Uncooled photovoltaic Hg1-xCdxTe LWIR detectors”, Proc. SPIE 4130, 175–184 (2000). Search in Google Scholar

[49] J. Piotrowski, “Uncooled operation of IR photodetectors”, Opto-Electron. Rev. 12, 11–122 (2004). Search in Google Scholar

[50] J. Piotrowski, Z. Nowak, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, “A novel multi-heterojunction HgCdTe long-wavelength infrared photovoltaic detector for operation under reduced cooling conditions”, Semicond. Sci. Technol. 13, 1209–1214 (1998). http://dx.doi.org/10.1088/0268-1242/13/10/02510.1088/0268-1242/13/10/025Search in Google Scholar

[51] J. Piotrowski, P. Brzozowski, and K. Jóźwikowski, “Stacked multijunction photodetectors of long wavelength radiation”, J. Electron. Mat. 32, 672–676 (2003). Search in Google Scholar

[52] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, “Growth of MOCVD HgCdTe heterostructures for uncooled infrared detectors”, Bull. Pol. Ac.: Tech. 53, 139–149 (2005). Search in Google Scholar

[53] J. Piotrowski, “Uncooled IR detectors maintain sensitivity”, Photonics Spectra 5, 80–86 (2004). Search in Google Scholar

[54] www.vigo.com.pl Search in Google Scholar

[55] Z. Djuric and J. Piotrowski, “Infrared photodetector with electromagnetic carrier depletion”, Opt. Eng. 39, 1955–1960 (1992). http://dx.doi.org/10.1117/12.5997310.1117/12.59973Search in Google Scholar

[56] http://www.pcosa.com.pl/wersja_angielska/laser_warn_sys.htm Search in Google Scholar

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0006-0/html
Scroll to top button