Skip to main content
Log in

Diversity and PAH growth abilities of bacterial strains isolated from a contaminated soil in Slovakia

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Different abandoned industrial areas contaminated by polycyclic aromatic hydrocarbons (PAHs) are present in Slovakia. These environmental burdens are very dangerous to the health of human and environment. The bioremediation, based on the use of hydrocarbons degrading microorganisms, is a promising strategy to sanitize these polluted sites. The aim of this investigation was to assess the bacterial diversity of a PAHs-contaminated soil and to select the potential hydrocarbonoclastic bacteria which can be used for different bioremediation approaches. The bacterial strains were isolated on minimal medium agar supplemented with a mixture of PAHs. Seventy-three isolated strains were grouped by ribosomal interspacer analysis in 15 different clusters and representatives of each cluster were identified by 16S rRNA sequencing. The PAHs degradation abilities of all bacterial isolates were estimated by the 2,6-dichlorophenol indophenol assay and by their growth on minimal broth amended with a mixture of PAHs. Different kinds of strains, members of the genus Pseudomonas, Enterobacter, Bacillus, Arthrobacter, Acinetobacter and Sphingomonas, were isolated from the contaminated soil. Four isolates (Pseudomonas putida, Arthrobacter oxydans, Sphingomonas sp. and S. paucimobilis) showed promising PAHs-degrading abilities and therefore their possible employing in bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PAH:

polycyclic aromatic hydrocarbon

RISA:

ribosomal interspacer analysis

2,6-DCPIP:

2,6-dichlorophenol indophenol

MM:

minimal medium

References

  • Abd-Elsalam H.E., Hafez E.E., Hussain A.A., Ali A.G. & El-Hanafy A.A. 2009. Isolation and identification of three-rings polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. Am. Eurasian J. Agric. Environ. Sci. 5: 31–38.

    CAS  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    CAS  PubMed  Google Scholar 

  • Arun A., Raja P.P., Arthi R., Ananthi M., Kumar K.S. & Eyini M. 2008. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl. Biochem. Biotechnol. 151: 132–42.

    Article  CAS  PubMed  Google Scholar 

  • Augustynowicz J., Kaszycki P., Ku’s M., Białecka A. & Kołoczek H. 2008. Optimized methods for stabilization of microbial communities specializing in biodegradation of organic environmental contaminants. Pol. J. Environ. Stud. 17: 655–664.

    CAS  Google Scholar 

  • Bandowe B.A.M., Sobocka J. & Wilcke W. 2011. Oxygencontaining polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: patterns, relation to PAHs and vertical distribution. Environ. Pollut. 159: 539–549.

    Article  Google Scholar 

  • Belgacem Z.B., Dousset X., Prévost H. & Manai M. 2009. Polyphasic taxonomic studies of lactic acid bacteria associated with Tunisian fermented meat based on the heterogeneity of the 16S–23S rRNA gene intergenic spacer region. Arch. Microbiol. 191: 711–720.

    Article  PubMed  Google Scholar 

  • Ben Said O., Goni-Urriza M.S., El Bour M., Dellali M., Aissa P. & Duran R. 2008. Characterization of aerobic polycyclic aromatic hydrocarbon-degrading bacteria from Bizerte lagoon sediments, Tunisia. J. Appl. Microbiol. 104: 987–997.

    Article  CAS  PubMed  Google Scholar 

  • Bissey L.L., Smith J.L. & Watts R.J. 2006. Soil organic matterhydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res. 40: 2477–2484.

    Article  CAS  PubMed  Google Scholar 

  • Doong R. & Lei W. 2003. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J. Hazard. Mater. 96: 15–27.

    Article  CAS  PubMed  Google Scholar 

  • Ferrarese E., Andreottola G., & Oprea I.A. 2008. Remediation of PAH contaminated sediments by chemical oxidation. J. Hazard. Mater. 152: 128–139.

    Article  CAS  PubMed  Google Scholar 

  • Gallego J., García-Martínez M., Llamas J., Belloch C., Peláez A. & Sánchez J. 2007. Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation 18: 269–281.

    Article  PubMed  Google Scholar 

  • Gan S., Lau E.V. & Ng H.K. 2009. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 172: 532–549.

    Article  CAS  PubMed  Google Scholar 

  • Gong Z., Alef K., Wilke B.M., Mai M. & Li P. 2005. Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil. J. Hazard. Mater. 124: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Gong Z., Wilke B.M., Alef K., Li P. & Zhou Q. 2006. Removal of polycyclic aromatic hydrocarbons from manufactured gas plant-contaminated soils using sunflower oil: laboratory column experiments. Chemosphere 62: 780–787.

    Article  CAS  PubMed  Google Scholar 

  • González N., Simarro R., Molina M.C., Bautista L.F., Delgado L. & Villa J.A. 2011. Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. Bioresour. Technol. 102: 9438–9446.

    Article  PubMed  Google Scholar 

  • Grosser R.J., Warshawsky D. & Vestal J.R. 1991. Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazolde in soils. Appl. Environ. Microbiol. 57: 3462–3469.

    CAS  PubMed  Google Scholar 

  • Hallett P.D., White N.A. & Ritz K. 2006. Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon. Biologia 61(Suppl. 19): S334–S338.

    Article  CAS  Google Scholar 

  • Hanson K.G., Desai J.D. & Desai A.J. 1993. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol. Tech. 7: 745–748.

    Article  CAS  Google Scholar 

  • Jennings A.A. 2012. Worldwide regulatory guidance values for surface soil exposure to noncarcinogenic polycyclic aromatic hydrocarbons. J. Environ. Manage. 101: 173–190.

    Article  CAS  PubMed  Google Scholar 

  • Jensen M.A., Webster J.A. & Straus N. 1993. Rapid identification of bacteria on the basis of polymerase chain reactionamplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59: 945–952.

    CAS  PubMed  Google Scholar 

  • Krajčovičová J. & Eschenroeder A.Q. 2007. Comparative health risks of domestic waste combustion in urban and rural Slovakia. Environ. Sci. Technol. 41: 6847–6853.

    Article  PubMed  Google Scholar 

  • Kobayashi T., Murai Y., Tatsumi K. & Iimura Y. 2009. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. enhanced by water-extractable organic matter from manure compost. Sci. Total Environ. 407: 5805–5810.

    Article  CAS  PubMed  Google Scholar 

  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In: Stackenbrandt E. & Goodfellow M. (eds) Nucleic Acid Techniques in Bacterial Systematics. New York: John Wiley & Sons.

    Google Scholar 

  • La Rosa G., De Carolis E., Sali M., Papacchini M., Riccardi C., Mansi A., Paba E., Alquati C., Bestetti G. & Muscillo M. 2006. Genetic diversity of bacterial strains isolated from soils, contaminated with polycyclic aromatic hydrocarbons, by 16S rRNA gene sequencing and amplified fragment length polymorphism fingerprinting. Microbiol. Res. 161: 150–157.

    Article  PubMed  Google Scholar 

  • Ortega-Calvo J.J., Marchenko A.I., Vorobyov A.V. & Borovick R.V. 2003. Chemotaxis in polycyclic aromatic hydrocarbondegrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiol. Ecol. 44: 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Pangallo D., Harichova J., Karelova E., Drahovska H., Chovanova K., Ferianc P., Turna J. & Timko J. 2004. Molecular investigation of enterococci isolated from different environmental sources. Biologia 59: 829–837.

    CAS  Google Scholar 

  • Rivas F.J. 2006. Polycyclic aromatic hydrocarbons sorbed on soils: a short review of chemical oxidation based treatments. J. Hazard. Mater. 138: 234–251.

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri C., Franzetti A., Bestetti G., Caredda P., La Colla P., Pintus M., Sergi S. & Tamburini E. 2009. Isolation and characterization of surface active compound-producing bacteria from hydrocarbon-contaminated environments. Int. Biodeterior. Biodegradation 63: 936–942.

    Article  CAS  Google Scholar 

  • Samanta S.K., Singh O.V. & Jain R.K. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol. 20: 243–248.

    Article  CAS  PubMed  Google Scholar 

  • Shi T., Fredrickson J.K. & Balkwill D.L. 2001. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J. Ind. Microbiol. Biotechnol. 26: 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Silva-Castro G.A., Uad I., Gonzalez-Lopez J., Fandino C.G., Toledo F.L. & Calvo C. 2012. Application of selected microbial consortia combined with inorganic and oleophilic fertilizers to recuperate oil-polluted soil using land farming technology. Clean Technol. Environ. Policy 14: 719–726.

    Article  CAS  Google Scholar 

  • Taylor L.T. & Jones D.M. 2001. Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44: 1131–1136.

    Article  CAS  PubMed  Google Scholar 

  • Thion C., Cébron A., Beguiristain T. & Leyval C. 2012. PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int. Biodeterior. Biodegradation 68: 28–35.

    Article  CAS  Google Scholar 

  • Urzi C., De Leo F., Bruno L. & Albertano P. 2010. Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb. Ecol. 60: 116–129.

    Article  CAS  PubMed  Google Scholar 

  • Wilcke W., Zech W. & Kobža J. 1996. PAH-pools in soils along a PAH-deposition gradient. Environ. Pollut. 92: 307–313.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Pangallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puškárová, A., Bučková, M., Chovanová, K. et al. Diversity and PAH growth abilities of bacterial strains isolated from a contaminated soil in Slovakia. Biologia 68, 587–591 (2013). https://doi.org/10.2478/s11756-013-0193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0193-3

Key words

Navigation