Skip to main content
Log in

Connections between the habitat pattern and the pattern of the mosquito larval assemblages

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Aim of the study was to find relations between the habitat pattern and the pattern of mosquito assemblages. Microhabitats of shallow lakes, riversides, forests and humid grasslands were studied. 1,239 samples (mosquito assemblages and potential habitat variables) were taken in different habitats in Hungary. Cluster analysis, Pearson correlation, MDS and PCA were used. Results showed that the mosquito larval assemblages are related to characteristic vegetation types: (a) reed beds and sedge-marshes with temporary character; (b) reed beds and/or sedge-marshes with permanent character; (c) the fresh grasslands characterized by temporary water supply; (d) the marginal zone of the open permanent waters (e.g., lakes); (e) the closed forest vegetation types of temporary water supply. Presence of mosquito species and their larval assemblages is dependent on characteristic habitat-mosaics. Mapping of this background pattern covers the mapping of mosquito assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonzo D., Grillet M.E., Liria J., Navarro J.-C., Weaver S.C. & Barrera R. 2005. Ecological characterization of the aquatic habitats of mosquitoes (Diptera: Culicidae) in enzootic foci of Venezuelan equine encephalitis virus in Western Venezuela. J. Med. Entomol. 42(3): 278–284. DOI: 10.1043/0022-2585(2005)042(0278:ECOTAH)2.0.CO;2

    Article  PubMed  Google Scholar 

  • Andersen A.N., Fisher A., Hoffmann B.D., Read J.L. & Richards R. 2004. Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral. Ecol. 29(1): 87–92. DOI: 10.1111/j.1442-9993.2004.01362.x

    Article  Google Scholar 

  • Barkman J.J. 1979. The investigation of vegetation texture and structure, pp. 123–160. In: Werger M.J.A. (ed.), The Study of Vegetation, Junk, The Hague, 316 pp. ISBN 90 6193 594 6

  • Bauer N. & Kenyeres Z. 2007. Seasonal changes of microclimatic conditions in grasslands and its influence on orthopteran assemblages. Biologia 62(6): 742–748. DOI: 10.2478/s11756-007-0135-z

    Article  Google Scholar 

  • Becker N., Petric D., Zgomba M., Boase C., Dahl C., Lane J. & Kaiser A. 2003. Mosquitoes and Their Control. Kluwer Academic/Plenum Publishers, New York, USA, 498 pp. DOI: 10.1007/978-3-540-92874-4

    Google Scholar 

  • Borhidi A. 2003. Magyarország növénytársulásai [Plant associations of Hungary]. Akadémiai Kiadó, Budapest, 688 pp.

    Google Scholar 

  • Bölöni J., Molnár Zs., Illyés E. & Kun A. 2007. A new habitat classification and manual for standardized habitat mapping. Annali di Botanica (nuova serie) 7: 55–76.

    Google Scholar 

  • Dangerfield J.M., Pik A.J., Britton D., Holmes A., Gillings M., Oliver I., Briscoe D. & Beattie A.J. 2003. Patterns of invertebrate biodiversity across a natural edge. Austral. Ecol. 28(3): 227–236. DOI: 10.1046/j.1442-9993.2003.01240.x

    Article  Google Scholar 

  • Denno R.F. 1977. Comparison of the assemblages of sap-feeding insects (Homoptera — Hemiptera) inhabiting two structurally different salt marsh grasses in the genus Spartina. Envir. Entomol. 6(3): 359–372.

    Google Scholar 

  • Dévai Gy. 1997. IX.3.2. Víztér-tipológiai törzsadattár (V-NéR) [Water-types database], pp. 293–298. In: Fekete G., Molnár Zs. & Horváth F. (eds), Nemzeti Biodiverzitás-monitorozó Rendszer II. A magyarországi élőhelyek leírása, határozója és a Nemzeti élőhely-osztályozási Rendszer [Description and Handbook of Habitats in Hungary and National Habitat System II.], Magyar Természettudományi Múzeum, Budapest.

    Google Scholar 

  • Fekete G., Molnár Zs. & Horváth F. (eds) 1997. Nemzeti Biodiverzitás Monitorozó Rendszer II. Magyarországi élőhelyek [Hungarian Biodiversity Monitoring System. Hungarian habitats]. MTM, Budapest, 374 pp.

    Google Scholar 

  • Fischer S. & Schweigmann N. 2004. Culex mosquitoes in temporary urban rain pools: Seasonal dynamics and relation to environmental variables. J. Vector Ecol. 29(2): 365–373.

    PubMed  Google Scholar 

  • Fuhlendorf S.D. & Smeins F.E. 1996. Spatial scale influence on longterm temporal patterns of a semi-arid grassland. Landsc. Ecol. 11(2): 107–113.

    Article  Google Scholar 

  • Hammer Ø., Harper D.A.T. & Ryan P.D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9 pp.

    Google Scholar 

  • Herben T., During H.J. & Law R. 2000. Spatio-temporal Patterns in Grassland Communities, pp. 48–64. In: Dieckmann U., Law R. & Metz J.A.J. (eds), The Geometry of Ecological Interactions: Simplifying Spatial Complexity, Cambridge University Press, © International Institute for Applied System Analysis.

  • HilleRisLambers R., Rietkerk M., van den Bosch F., Prins H.H.T. & de Kroon H. 2001. Vegetation pattern formation in semi-arid grazing systems. Ecology 82(1): 50–61. DOI: 10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2

    Article  Google Scholar 

  • Jasieniuk M.A. & Johnson E.A. 1982. Peatland vegetation organization and dynamics in the western subarctic, North-west Territories, Canada. Can. J. Bot. 60: 2581–2593.

    Article  Google Scholar 

  • Joern A. 1982. Vegetation structure and microhabitat selection in grasshoppers (Orthoptera: Acrididae). Southwest. Nat. 27(2): 197–209.

    Article  Google Scholar 

  • Joosse E.N.G. & Verhoef H.A. 1987. Developments in ecophysiological research on soil invertebrates. Adv. Ecol. Res. 16: 175–248. DOI: 10.1016/S0065-2504(08)60089-6

    Article  Google Scholar 

  • Lawton J.H. 1976. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73(1—3): 187–216. DOI: 10.1111/j.1095-8339.1976.tb02022.x

    Article  Google Scholar 

  • Meron E., Gilad E., von Hardenberg J., Shachak M. & Zarmi Y. 2004. Vegetation patterns along a rainfall gradient. Chaos, Solitons and Fractals 19(2): 367–376. DOI: 10.1016/S0960-0779(03)00049-3

    Article  Google Scholar 

  • Mohrig W. 1969. Die Culiciden Deutschlands — Untersuchungen zur Taxonomie, Biologie und Ökologie der einheimischen Stechmücken. Parasitologishe Schriftenreihe (Heft 18), VEB G. Fischer Verlag, Jena, Germany, 260 pp.

    Google Scholar 

  • Paradise C.J. 2000. Effects of pH and resources on a processing chain interaction in simulated treeholes. J. Anim. Ecol. 69(4): 651–658. DOI: 10.1046/j.1365-2656.2000.00423.x

    Article  Google Scholar 

  • Pickett S.T.A. & Cadenasso M.L. 1995. Landscape ecology — spatial heterogeneity in ecological systems. Science 269(5222): 331–334. DOI: 10.1126/science.269.5222.331

    Article  PubMed  CAS  Google Scholar 

  • Podani J. 2001. SYN-TAX 2000. Computer Program for Data Analysis in Ecology and Systematics. Scientia Publishing, Budapest, 53 pp.

    Google Scholar 

  • Purves D.W. & Law R. 2002. Fine-scale spatial structure in a grassland community: quantifying the plant’s-eye view. J. Ecol. 90(1): 121–129. DOI: 10.1046/j.0022-0477.2001.00652.x

    Article  Google Scholar 

  • Rhoades D.F. & Cates R.G. 1976. A general theory of plant antiherbivore chemistry, pp. 168–213. In: Wallace J.W. & Mansell R.L. (eds), Biochemical Interactions Between Plants and Insects, Recent Advances in Phytochemistry, Vol. 10, Plenum, New York & London.

    Google Scholar 

  • Sattler M.A., Mtasiwa D., Kiama M., Premji Z., Tanner M., Killeen G.F. & Lengeler C. 2005. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malaria J. 4: 4–19. DOI: 10.1186/1475-2875-4-4

    Article  Google Scholar 

  • Schäfer M. 2004. Mosquitoes as a Part of Wetland Biodiversity. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1042, Uppsala, 64 pp.

  • Shapiro A.M. & Shapiro A.R. 1973. The ecological associations of the butterflies of Staten Islands. J. Res. Lepid. 12(2): 65–128.

    Google Scholar 

  • StatSoft Inc. 1995. STATISTICA for Windows (Computer program manual). StatSoft, Inc., 2325 East 13th Street, Tulsa.

    Google Scholar 

  • Stinson C.S. & Brown V.K. 1983. Seasonal changes in the architecture of natural plant communities and its relevance to insect herbivores. Oecologia 56(1): 70–78. DOI: 10.1007/BF00378218

    Article  Google Scholar 

  • Swanson F.J., Kratz T.K., Caine N. & Woodmansee R.C. 1988. Landform effects on ecosystem patterns and processes. Geomorphic features of the earth’s surface regulate the distribution of organisms and processes. Bioscience 38(2): 92–98.

    Article  Google Scholar 

  • Swihart R.K., Lusk J.J., Duchamp J.E., Rizkalla C.E. & Moore J.E. 2006. The roles of landscape context, niche breadth, and range boundaries in predicting species responses to habitat alteration. Divers. Distrib. 12(3): 277–287. DOI: 10.1111/j.1366-9516.2006.00242.x

    Article  Google Scholar 

  • Taylor P.D., Fahrig L., Henein K. & Merriam G. 1993. Connectivity is a vital element of landscape structure. Oikos 68(3): 571–573

    Article  Google Scholar 

  • Tischendorf L. & Fahrig L. 2000. On the usage and measurement of landscape connectivity. A reply. Oikos 90: 7–19.

    Article  Google Scholar 

  • Wang X. & Horiguchi I. 1998. The relationship between remotely sensed canopy surface temperature and canopy structure for crop fields. J. Fac. Agricult. Hokkaido Univ. 68(1): 45–60.

    Google Scholar 

  • Zehm A., Nobis M. & Schwabe A. 2003. Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora 198(2): 142–160. DOI: 10.1078/0367-2530-00086

    Google Scholar 

  • Zhang S., Wang R.-S. & Zhang X.-S. 2007. Identification of overlapping community structure in complex networks using fuzzy c means clustering. Physica A 374(1): 483–490. DOI: 10.1016/j.physa.2006.07.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, N., Kenyeres, Z., Tóth, S. et al. Connections between the habitat pattern and the pattern of the mosquito larval assemblages. Biologia 66, 877–885 (2011). https://doi.org/10.2478/s11756-011-0091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0091-5

Key words

Navigation