Skip to main content

Advertisement

Log in

Identification of phytogeographical borders using grassland vegetation data

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The paper proposes a methodology of phytogeographical regionalisation using grassland vegetation data. The research area is located in the West Carpathians, in volcanic field with adjacent post-tectonic basins and valleys in the Central Slovakia. The applied techniques were variogram modelling, ordinary kriging and lattice wombling. Phi coefficient was used to determine the diagnostic species of proposed phytochoria (fidelity test). The 1978 unevenly distributed grassland polygons that comprised 1071 taxa of vascular plants were the subject of the analyses. Ecological indicator values for temperature (EITs), weighted by species coverage in the Tansley scale in each grassland polygon, were used for the modelling. The gradients in the surface of the indicator value produced by ordinary kriging were analyzed. The steepest gradients indicate the most radical changes in floristic composition typical of border locations.

The steepest gradient divides the study area into main cold and main warm regions. Less intensive gradients determined the position of 15 subdistricts. Subsequently, 7 out of 15 subdistricts were merged on the basis of similar natural conditions and floristic composition into 3 districts.

Ten, mostly thermophilous, diagnostic species were determined for the main warm region. Fourteen, mostly psychrophilous, diagnostic species were determined for the main cold region. Subsequently, diagnostic species were determined for districts. High number of diagnostic species (57) characterize the Pol’ana Mts district. Eleven diagnostic species were determined for the Zvolenská kotlina basin district. The Javorie and Ostrôžy Mts district was very poorly diferentiated with 3 diagnostic species.

Such evaluation suggests that proposed methodology allowed for the identification of phytochoria with specific floristic composition. The obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson P.A. & Weimarck G. 1996. Floristic patterns and phytogeography of Skĺne, S Sweden. Symb. Bot. Ups. 31: 239–264.

    Google Scholar 

  • Barbujani G., Oden, N.L. & Sokal R. 1989. Detecting areas of abrupt change in maps of biological variables. Syst. Zool. 38: 376–389.

    Article  Google Scholar 

  • Cadenasso M.L., Picket S.T.A., Weathers K.C. & Jones C.G. 2003. A framework for a theory of ecological boundaries. Bio-Science 53: 750–758.

    Google Scholar 

  • Choesin D. & Boerner R.E.J. 2002. Vegetation boundary detection: a comparison of two approaches applied to field data. Plant. Ecol. 158: 85–96.

    Article  Google Scholar 

  • Chytrý M., Grulich V., Tichý L. & Kouřil M. 1999. Phytogeographical boundary between Pannonicum and Hercynicum: a multivariate analysis of landscape in the Podyjí/Thayatal National Park, Czech Republic/Austria. Preslia 71: 1–19.

    Google Scholar 

  • Chytrý M., Tichý L., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90.

    Article  Google Scholar 

  • Chytrý M. (ed.) 2007. Vegetace České republiky 1. Travinná a keříčková vegetace. Academia, Praha, 525 pp.

    Google Scholar 

  • Cimalová Š. & Lososová Z. 2009. Arable weed vegetation of the northeastern part of the Czech Republic: effects of environmental factors on species composition. Plant Ecol. 203: 45–57.

    Article  Google Scholar 

  • Diekmann M. 2003. Species indicator values as an important tool in applied ecology — a review. Basic Appl. Ecol. 4: 193–506.

    Article  Google Scholar 

  • Diekmann M. & Lawesson J.E. 1999. Shifts in ecological behaviour of herbaceous forest species along a transect from Northern central to North Europe. Folia Geobot. 34: 127–141.

    Article  Google Scholar 

  • Dostál J. 1957. Fytogeografické členění ČSR. Sborn. Českoslov. Společn. Zeměp. 62: 1–18.

    Google Scholar 

  • Dostál J. 1960. The phytogeographical regional distribution of the Czechoslovak flora. Sborn. Českoslov. Společn. Zeměp. 65: 193–202.

    Google Scholar 

  • Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. & Paulißen D. 1992. Zeigerwerte von Pflanzen in Mitteleuropa, 2nd ed. Scr. Geobot. 18: 1–258.

    Google Scholar 

  • Fagan W.F., Fortin M.J. & Soykan C. 2003. Integrating edge detection and dynamic modeling in quantitative analyses for ecological boundaries. Bioscience 53: 730–738.

    Article  Google Scholar 

  • Fortin M.J., Olson R.J., Ferson S., Iverson L., Hunsaker C., Edwards G., Levin D., Butera K. & Klemas V. 2000. Issues related to the detection of boundaries. Landscape Ecol. 15: 453–466.

    Article  Google Scholar 

  • Fortin M.J., Keitt T.H., Maurer B.A., Taper M.L., Kaufman D.M. & Blackburn T.M. 2005. Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 105: 7–17.

    Article  Google Scholar 

  • Futák J. 1966. Fytogeografické členenie Slovenska, pp. 535–538. In: Futák J. (ed.), Flóra Slovenska I, Vydavateľstvo SAV, Bratislava.

    Google Scholar 

  • Hargrove W. & Hoffman F. 2005. Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ. Manage. 34(Suppl. 1): 39–60.

    Google Scholar 

  • Isaaks H.E. & Srivastava R.M. 1989. Introduction to Applied Geostatistics. Oxford University Press, New York, 561 pp.

    Google Scholar 

  • Janišová M., Hájková P., Hegedüšová K., Hrivnák R., Kliment J., Michálková D., Ružičková H., Řezníčková M., Tichý L., Škodová I., Uhliarová E., Ujházy K. & Zaliberová M. 2007. Travinnobylinná vegetácia Slovenska — elektronický expertný systém na identifikáciu syntaxónov. Botanický ústav SAV, Bratislava, 263 pp.

    Google Scholar 

  • Jarolímek I. & Šibík J. (eds), 2008. Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. Veda, Bratislava, 332 pp.

    Google Scholar 

  • Jarolímek I., Šibík J., Hegedüšová K., Janišová M., Kliment J., Kučera P., Májeková J., Michálková D., Sadlonová J., Šibiková J., Škodová I., Uhlířová J., Ujházy K., Ujházyová M., Valachovič M. & Zaliberová M. 2008. A list of vegetation units of Slovakia, pp. 295–329. In: Jarolímek I. & Šibík J. (eds), Diagnostic, constant and dominant species of the higher vegetation units of Slovakia, Veda, Bratislava.

    Google Scholar 

  • Jongman R.H.G., ter Braak C.J.F. & van Tongeren O.F.R. 1987. Data analysis in community and landscape ecology. Pudoc, Wageningen, 299 pp.

    Google Scholar 

  • Laurance W.F., Didham R.K. & Power M.E. 2001. Ecological boundaries: A search for synthesis. Trends Ecol. Evol. 16: 70–71.

    Article  Google Scholar 

  • Liebhold A.M., Rossi R.E. & Kemp W.P. 1993. Geostatistics and geographic information systems in applied insect ecology. Annu. Rev. Entomol. 38: 303–327.

    Article  Google Scholar 

  • Marhold K. & Hindák F. 1998. Zoznam nižších a vyšších rastlín Slovenska. Veda, Bratislava, 688 pp.

    Google Scholar 

  • Mazúr E. & Lukniš M. 2002. Geomorfologické jednotky. Map M 1: 1 000 000, p. 88. In: Hrnčiarová T. (ed.), Atlas krajiny Slovenskej republiky, Ministerstvo životného prostredia SR, Slovenská agentúra životného prostredia, Bratislava, Banská Bystrica.

    Google Scholar 

  • Novák F.A. 1954. Přehled československé květeny s hlediska ochrany přírody a krajiny, pp. 193–409. In: Veselý J. (ed.), Ochrana československé přírody a krajiny 2, Nakladatelství ČSAV, Praha.

    Google Scholar 

  • Olea R.A. 1999. Geostatistics for engineers and Earth scientists. Kluwer, Boston, 303 pp.

    Google Scholar 

  • Pax F. 1898. Grundzüge der Pflanzenverbreitung in den Karpathen. 1. Verlag von Wilhelm Engelmann, Leipzig, 270 pp.

    Google Scholar 

  • Pawłowski B. 1969. Die Karpaten und die Sudeten — eine vergleichende pflanzengeographische Studie. Archiv Naturschutz Landschaftsf. 9: 251–263.

    Google Scholar 

  • Pawłowski B. 1970. Remarques sur l’ endémisme dans la flore des Alpes et des Carpates. Vegetatio 21: 181–243.

    Article  Google Scholar 

  • Plesník P. 2002. Fytogeograficko-vegetačné členenie. Map M 1: 1 000 000, p. 113. In: Hrnčiarová T. (ed.), Atlas krajiny Slovenskej republiky, Ministerstvo životného prostredia SR, Slovenská agentúra životného prostredia, Bratislava, Banská Bystrica.

    Google Scholar 

  • Petřík P. & Wild J. 2006. Environmental correlates of the patterns of plant distribution at the meso-scale: a case study from Northern Bohemia (Czech Republic). Preslia 78: 211–234.

    Google Scholar 

  • Polčák N. 2008. Vplyv geografickej polohy na teplotné inverzie vo Zvolenskej kotline, pp. 190–197. In: Turisová I., Martincová E. & Bačkor P. (eds), Výskum a manažment zachovania prírodných hodnôt Zvolenskej kotliny, FPV UMB v Banskej Bystrici, Banská Bystrica.

    Google Scholar 

  • Rossi R.E., Mulla D.J., Journel A.G. & Franz E.H. 1992. Geostatistical tools for modeling and intepreting ecological spatial dependence. Ecol. Monogr. 62: 277–314.

    Article  Google Scholar 

  • Schaffers A.P. & Sýkora K.V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11: 225–244.

    Article  Google Scholar 

  • Schmidtlein S. & Ewald J. 2003. Landscape patterns of indicator plants for soil acidity in the Bavarian Alps. J. Biogeogr. 30: 1493–1503.

    Article  Google Scholar 

  • Skalický V. 1988. Regionálně fytogeografické člěnění, pp. 103–121. In: Hejný S. & Slavík B. (eds), Květena České socialistické republiky 1, Academia, Praha.

    Google Scholar 

  • Sokal R.R., Oden N.L. & Thomson B.A. 1998. Local spatial autocorrelation in a biological model. Geogr. Anal. 30: 331–354.

    Google Scholar 

  • Sokal R.R. & Rohlf F. J. 1995. Biometry: the principles and practice of statistics in biological research, 3rd ed. W.H. Freeman & Company, New York, 887 pp.

    Google Scholar 

  • Soó R. 1933. Analyse der Flora des historischen Ungarns (Elemente, Endemismen, Relikte). Magy. Biol. Kutatóintez. Munkái 6: 173–194.

    Google Scholar 

  • Soó R. 1964. A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve I. Akade’miai Kiado’, Budapest, 589 pp.

    Google Scholar 

  • Szücz L. 1943. A Keleti Kárpátok endemikus novényfajai I. Acta Geobot. Hung. 5: 185–240.

    Google Scholar 

  • Strayer D.L., Power M.E., Fagan W.F., Pickett S.T.A. & Belnap J. 2003. A classification of ecological boundaries. BioScience 53: 723–729.

    Article  Google Scholar 

  • Šeffer J., Stanová V., Lasák R., Galvánek D. & Viceníková A. 2000. Mapovanie travinnej vegetácie Slovenska, 2nd ed. Daphne — Centrum pre aplikovanú ekológiu, Bratislava, 34 pp.

    Google Scholar 

  • Škodová I. 2007. Bromion erecti Koch 1926, pp. 71–77. In: Janišová M. (ed.), Travinnobylinná vegetácia Slovenska — elektronický expertný systém na identifikáciu syntaxónov, Botanický ústav SAV, Bratislava.

    Google Scholar 

  • Tansley A.G. & Chip T.F. 1926. Aims and Methods in the Study of Vegetation. Whitefriars, London, 383 pp.

    Google Scholar 

  • Tichý L. 2002. Juice, software for vegetation classification. J. Veg. Sci. 13: 451–453.

    Article  Google Scholar 

  • Ujházy K. 2007. Violion caninae Schwickerath 1944, pp. 223–230. In: Janišová M. (ed.), Travinnobylinná vegetácia Slovenska — elektronický expertný systém na identifikáciu syntaxónov, Botanický ústav SAV, Bratislava.

    Google Scholar 

  • Vass D., Began A., Gross P., Kahan Š., Köhler E., Lexa J. & Nemčok J. 1986. Regionálne geologické členenie Západných Karpát a severných výbežkov panónskej panvy na území ČSSR. Map M 1: 500 000. Geologický ústav Dionýza Štúra, Bratislava.

    Google Scholar 

  • Wackernagel H. 2003. Multivariate Geostatistics: An Introduction with Applications, 3rd ed. Springer Verlag, New York, 387 pp.

    Google Scholar 

  • Webster R. 1996. What is kriging? Aspects Appl. Biol. 46: 57–66.

    Google Scholar 

  • Womble W.H. 1951. Differential systematics. Science 114: 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Zemanek B. 1991a. The phytogeographical boundary between the East and West Carpathians — past and present. Thaiszia-J.Bot. 1: 59–67.

    Google Scholar 

  • Zemanek B. 1991b. The phytogeographical division of the Polish East Carpathians. Zesz. Nauk. Uniw. Jagiellon., Prace Bot. 22: 81–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Turisová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turisová, I., Hlásny, T. Identification of phytogeographical borders using grassland vegetation data. Biologia 65, 630–638 (2010). https://doi.org/10.2478/s11756-010-0054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0054-2

Key words

Navigation