Skip to main content
Log in

Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Six glycoside hydrolase (GH) family 13 members, classified under the polyspecific neopullulanase subfamily GH13_20 (also termed cyclomaltodextrinase) were analysed. They originate from thermophilic bacterial strains (Anoxybacillus flavithermus, Laceyella sacchari, and Geobacillus thermoleovorans) or from environmental DNA, collected after in situ enrichments in Icelandic hot springs. The genes were isolated following the CODEHOP consensus primer strategy, utilizing the first two of the four conserved sequence regions in GH13. The typical domain structure of GH13_20, including an N-terminal domain (classified as CBM34), the catalytic module composed of the A-and B-domains, and a C-terminal domain, was found in five of the encoded enzymes (abbreviated Amy1, 89, 92, 98 and 132). These five enzymes degraded cyclomaltodextrins (CDs) and starch, while only three, Amy92 (L. sacchari), Amy98 (A. flavithermus) and Amy132 (environmental DNA), also harboured neopullulanase activity. The L. sacchari enzyme was monomeric, but with CD as the preferred substrate, which is an unusual combination. The sixth enzyme (Amy29 from environmental DNA), was composed of the ABC-domains only. Preferred substrate for Amy29 was pullulan, which was degraded to panose, and the enzyme had no detectable activity on CDs. In addition to its different activity profile and domain composition, Amy29 also displayed a different conservation (LPKF) in the fifth conserved region (MPKL) proposed to identify the subfamily. All enzymes had apparent temperature optima in the range 50–65°C, while thermostability varied, and was highest for Amy29 with a half-life of 480 min at 80°C. Calcium dependent activity or stability was monitored in four enzymes, but could not be detected for Amy29 or 98. Tightly bound calcium can, however, not be ruled out, and putative calcium ligands were conserved in Amy98.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CBM:

carbohydrate-binding module

CD:

cyclomaltodextrin

CDase:

cyclomaltodextrinase

CODEHOP:

consensus degenerate hybrid oligonucleotide primer

GH:

glycoside hydrolase

GH13_20:

glycoside hydrolase family 13 subfamily 20

MAase:

maltogenic amylase

NPase:

neopullulanase

References

  • Abe A., Tonozuka T., Sakano Y. & Kamitori S. 2004. Complex structures of Thermoactinomyces vulgaris R-47 α-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J. Mol. Biol. 335: 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Abe A., Yoshida H., Tonozuka T., Sakano Y. & Kamitori S. 2005. Complexes of Thermoactinomyces vulgaris R-47 α-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS J. 272: 6145–6153.

    Article  PubMed  CAS  Google Scholar 

  • Henrissat B., Teeri T.T. & Warren R.A.J. 1998. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425: 352–354.

    Article  PubMed  CAS  Google Scholar 

  • Hondoh H., Kuriki T. & Matsuura Y. 2003. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 326: 177–188.

    Article  PubMed  CAS  Google Scholar 

  • Kamitori S., Abe A., Ohtaki A., Kaji A., Tonozuka T. & Sakano Y. 2002. Crystal structure and structural comparison of Thermoactinomyces vulgaris R-47 α-amylase 1 (TVAI) at 1.6 Å resolution and α-amylase 2 (TVAII) at 2.3 Å resolution. J. Mol. Biol. 318: 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Kim T.J., Nguyen V.D., Lee H.S., Kim M.J., Cho H.Y., Kim Y.W., Moon T.W., Park C.S., Kim J.W., Oh B.H., Lee S.B., Svensson B. & Park K.-H. 2001. Modulation of the multisubstrate specificity of Thermus maltogenic amylase by truncation of the monomer/dimer equilibrium. Biochemistry 40: 14182–14190.

    Article  PubMed  CAS  Google Scholar 

  • Labes A, Nordberg Karlsson E, Fridjonsson O, Turner P., Hreggvidsson G., Kristjansson J., Holst O. & Schönheit P. 2008. Isolation of new members of glycoside hydrolase family 13 derived from environmental DNA. Appl. Environ.Microbiol. 74: 1914–1921.

    Article  PubMed  CAS  Google Scholar 

  • Lee H.S., Kim M.S., Cho H.S., Kim J.I., Kim T.J., Choi J.H., Park C., Lee H.S., Oh B.H. & Park K.H. 2002. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891–21897.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationships of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta. 1546: 1–20.

    PubMed  CAS  Google Scholar 

  • Machovic M. & Janecek S. 2006. Starch-binding domains in the post-genome era. Cell. Mol. Life Sci. 63: 2710–2724.

    Article  PubMed  CAS  Google Scholar 

  • Ooshima T., Fujiwara T., Takei T., Izumitani A., Sobue S. & Hamada S. 1988. The caries inhibitory effects of GOS-sugar in vitro and in rat experiments. Microbiol. Immunol. 32: 1093–1105.

    PubMed  CAS  Google Scholar 

  • Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci. 59: 1945–1959.

    Article  PubMed  CAS  Google Scholar 

  • Park K.H., Kim T.J., Cheong T.K., Kim J.W., Oh B.H. & Svensson B. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta 1478: 165–185.

    PubMed  CAS  Google Scholar 

  • Park S.H., Kang H.K., Shim J.H., Woo E.J., Hong J.S., Kim J.W., Oh B.H., Lee B.H., Cha H. & Park K.H. 2007. Modulation of substrate preference of Thermus maltogenic amylase by mutation of the residues at the interface of a dimer. Biosci. Biotechnol. Biochem. 71: 1564–1567.

    Article  PubMed  CAS  Google Scholar 

  • Rose T.M., Henikoff J.G. & Henikoff S. 2003. CODEHOP (Consensus-degenerate hybrid oligonucleotide primer) PCR primer design. Nucleic Acids Res. 31: 3763–3766.

    Article  PubMed  CAS  Google Scholar 

  • Stam M.R., Danchin E.G.J., Rancurel C., Coutinho P.M. & Henrissat, B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Prot. Eng. Des. Select. 19: 555–562.

    Article  CAS  Google Scholar 

  • Tada S., Iimura Y., Gomi K., Takahashi K., Hara S. & Yoshizawa K. 1989. Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 53: 593–599.

    CAS  Google Scholar 

  • Turner P., Labes A., Fridjonsson O.H., Hreggvidson G.O., Schönheit P., Kristjansson J.K., Holst O. & Nordberg Karlsson E. 2005a. Two novel cyclodextrin-degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. J. Biosci. Bioeng. 100: 380–390.

    Article  PubMed  CAS  Google Scholar 

  • Turner P., Nilsson C., Svensson D., Holst O., Gorton L. & Nordberg Karlsson E. 2005b. Monomeric and dimeric cyclomaltodextrinases reveal different modes of substrate degradation. Biologia 60(Suppl. 16): 79–87.

    CAS  Google Scholar 

  • van der Maarel M.J.E.C., van der Veen B., Uitdehaag J.C.M., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Nordberg Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordberg Karlsson, E., Labes, A., Turner, P. et al. Differences and similarities in enzymes from the neopullulanase subfamily isolated from thermophilic species. Biologia 63, 1006–1014 (2008). https://doi.org/10.2478/s11756-008-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0171-3

Key words

Navigation